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Abstract—This article investigates distributed robust for-
mation control and distributed obstacle avoidance prob-
lems for networks of heterogeneous underactuated surface
vessels without global position measurements. We exploit
the cascaded structure of the kinematics and dynamics
of generic vessel models to develop structured reduced-
order error dynamics for group cooperation. By incorpo-
rating graph theory, the supertwisting control technique,
and persistence of excitation concept, a distributed robust
formation control scheme is developed without requiring
global position measurements, where agents in the net-
work may possess completely different dynamic models. It
is shown that the stabilization of the reduced-order error
dynamics guarantees the stability of the entire vessel er-
ror system subject to modeling uncertainties and bounded
disturbances. Distributed obstacle avoidance is achieved
by surrounding obstacles with stable elliptical limit cycles.
During the obstacle avoidance stage, a part of the formation
deforms to allow vessels to follow transient trajectories
around static and dynamic obstacles. Simulation results
are provided to demonstrate that the proposed cooperative
control scheme can prevent obstacle and interagent colli-
sions while achieving robust formation in heterogeneous
underactuated vessel networks.

Index Terms—Distributed obstacle avoidance, heteroge-
neous networks, robust formation control, underactuated
marine vehicles.

I. INTRODUCTION

A. Motivation and Related Works

THE FORMATION control problem of multivehicle net-
works has attracted great attention within the fields of

control engineering and marine industry in recent decades due
to increasing potential military and civilian applications [1], [2].
A network of marine vehicles can be used for significant and
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practical tasks such as reconnaissance, mine clearance, marine
search, and rescue missions, to name a few. Such tasks cannot
be performed by a single vehicle due to its limited capability and
vulnerability to malfunctions. However, operating multiple ve-
hicles as a team can enhance efficiency and increase robustness
to individual agent failures.

The distributed formation control problem consists of mak-
ing all the agents form a predefined geometrical configuration
through local interactions. In other words, each follower uses
only local information, e.g., relative position measurements, to
achieve a global formation task. Other topics of cooperative
control, such as consensus, swarm, collective tracking, and
containment control of multivehicle systems, are also closely
related to formation control. Various formation control schemes
have been proposed, such as leader-follower strategy [3], virtual
structure method [4], and behavior-based approach [5]. Among
these formation control schemes, the leader–follower strategy is
particularly appreciated in many applications for its simplicity
and scalability [3].

Numerous formation control designs for underactuated sur-
face vessels using the leader–follower strategy can be found
in the literature [2], [6]–[14]. In [6], sliding mode formation
controllers have been proposed for unmanned surface vessels
based on two specific geometric schemes. In [8], position-based
cooperative control laws for underactuated surface vessels have
been proposed for different communication scenarios. In [9],
using generalized saturation functions, formation control laws
with limited torque are presented to reduce the risk of actuator
saturation. Using time-varying tan-type barrier Lyapunov func-
tions, a fault-tolerant leader–follower formation control scheme
was proposed in [2] for a class of underactuated surface vessels
with line-of-sight range and angle constraints. Then, Ghommam
and Saad [10] generalized the result in [2] to asymmetric time-
varying constraints on the range and bearing angle between the
follower and the leader in the formation. In [11], based on slid-
ing mode control and parameter estimation, a leader–follower
formation control law was proposed for surface vessels with
model uncertainties and environmental disturbances. A finite-
time formation control design is presented for underactuated
ships based on terminal sliding mode theory in [12]. In [13],
practical formation-containment tracking protocols are designed
based on extended state observers. Recently, in [14], using neural
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networks and high-gain observers, an adaptive output-feedback
formation control law was developed for vessels without velocity
measurements.

Although numerous formation control schemes have been
proposed for underactuated surface vessels in the literature,
there are several common drawbacks in the existing controllers.
First, surface vessels in practical applications may have different
parameters or even different dynamical models due to the various
sizes, shapes, and loads. The vessels in the network may be
described by different models such as diagonal or coupled mass
matrix model and linear or nonlinear hydrodynamic damping
model [15]. Thus, it is more practical if a group of vessels
can cooperate with each other regardless of the parameters or
even structures of their dynamical models. In other words, we
need formation control schemes developed for heterogeneous
networks. However, in [6], [8], [10], and [12]–[14], not only
the dynamical model structure but also the parameters of all
the vessels in the network are required to be identical, which
is a very strict and unrealistic assumption. Second, in contrast
to the displacement-based approach, in the position-based con-
trol scheme such in [8] and [9], vessels need to sense their
global positions with respect to a global coordinate system. In
this case, the communications among agents are unnecessary
since the desired formation can be achieved by position control
of individual vessels [16]. Furthermore, using global sensors
could be quite a demanding requirement depending upon the
environment and could be biased easily due to measurement
errors [17]. On the other hand, the displacement-based approach
balances the sensing capability and the interaction requirements,
and it is particularly appreciated in many applications, especially
in situations when the GPS signal is not available, while on-
board sensors can provide measurements necessary for feedback
control design. It is certain that if the agents have distributed
sensing capabilities, they can control themselves based on lo-
cal interactions. Therefore, to improve the cooperative ability,
traffic safety, and communication efficiency, it is preferable to
have vessel-to-vessel interactions and to control the intervessel
configurations using onboard vehicle sensors. Third, as pointed
in [11], static or time-varying obstacle avoidance capability
should be taken into account in the controller design in practical
applications.

B. Main Contributions

The main contribution and novelty of this article is in de-
signing a distributed robust formation control framework with
distributed obstacle avoidance capability for networks of het-
erogeneous underactuated surface vessels using only neighbor-
to-neighbor information exchange.

1) We solve the robust formation control problem for hetero-
geneous underactuated vessel networks. In other words,
we do not assume any particular structure of the internal
dynamics of each vehicle but rather use a generic dynam-
ical model, and the vehicles in the network are allowed
to have identical or nonidentical dynamics.

2) We solve the obstacle avoidance problem using a simple
distributed strategy that surrounds obstacles with stable

elliptical limit cycles and forces the vessels to converge
to the limit cycle solutions. It should be noted that our
distributed obstacle avoidance capability also includes
collision avoidance among the network agents.

3) Both the proposed formation control law and obstacle
avoidance control law require only neighbor-to-neighbor
information exchange and do not require any global
position measurements of the followers. We emphasize
that not requiring “global position measurements” is an
essential difficulty in distributed control.

We also emphasize that in contrast to cooperative control of
heterogeneous fully actuated systems, the problem of coopera-
tive control of heterogeneous underactuated systems is far more
complex. This is not only because the number of independent
actuators is less than the number of degrees of freedom and
thus have limited capability, but also because all fully actuated
systems are feedback equivalent to double-integrator dynamics,
and hence, the problem of cooperative control of heterogeneous
fully actuated systems is equivalent to cooperative control of ho-
mogeneous double-integrator agents. To the best of the authors’
knowledge, this is the first work that solves the heterogeneous
formation control problem without requiring any particular
structure of the internal dynamics of the underactuated vehicles
and without requiring any global position measurement. This
article is the continuation of earlier work on formation control
of homogeneous underactuated surface vessel networks [18]
extended to heterogeneous networks with distributed obstacle
avoidance ability and a new control design.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Let Rn represent then-dimensional Euclidean space, R≥0 the
set of all nonnegative real numbers, |x| the Euclidean norm of
a vector x ∈ Rn, diag{·} ∈ Rn×n the diagonal matrix, L2 the
space of all square integrable functions, and L∞ the space of
all essentially bounded functions. For a bounded and piecewise
continuous function u : R → Rn, let |u|∞ denote its sup norm.
For any two convergent functions f1(t) and f2(t), we use
f1(t) → f2(t) to represent |f1(t)− f2(t)| → 0 as t → ∞, and
use

exp−→ to represent the exponential convergence. Throughout
this article, we omit the arguments of functions when they are
clear from the context. In the context of multiagent systems, we
use the bold and nonitalicized subscript i to denote the index of
an agent.

B. Model Description

Consider a network of N + 1 heterogeneous underactuated
surface vessels where the vessels are numbered i = 0, 1, . . . , N
with 1, . . . ,N representing all the followers and 0 the (virtual or
real) group leader. The motion of a single vessel i in the network
is described by assigning a body-fixed reference frame {xbiybi}
to its center of mass located at (xi, yi) ∈ R2 with respect to
a fixed inertial reference frame {XY } and yaw angle θi ∈ R,
as shown in Fig. 1. Note that most practical surface vessels,
including unmanned ones, have two actual inputs, which can be
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Fig. 1. Top view of the leader–follower formation of underactuated
surface vessels i and j.

mapped into the surge and yaw control inputs. We assume that
each vessel in the network has only two actuators, which provide
the surge control force and the yaw control moment.

The mathematical model of the vessel is represented by its
kinematics and generic planar rigid body dynamics⎧⎨
⎩

ẋi = vxi cos θi − vyi sin θi
ẏi = vxi sin θi + vyi cos θi
θ̇i = ωi

(1a)

⎧⎨
⎩

v̇xi = fxi(vxi, vyi, ωi) + δxi(vxi, vyi, ωi, θi, t) + τ1i
v̇yi = fyi(vxi, vyi, ωi) + δyi(vxi, vyi, ωi, θi, t)
ω̇i = fωi(vxi, vyi, ωi) + δωi(vxi, vyi, ωi, θi, t) + τ2i

(1b)

where (vxi, vyi) represents the velocity of the center of mass
of vessel i in the body-fixed frame {xbiybi}, and ωi is its
angular velocity. Functions fxi(·), fyi(·), and fωi(·) are known
locally as Lipschitz continuous functions, which usually consist
of nominal inertial, Coriolis-like, and hydrodynamic damping
terms. The terms δxi(·), δyi(·), δωi(·) represent the unknown
terms, which may include modeling uncertainties and bounded
disturbances with bounded first derivatives, i.e.,

max{|δxi(·)|∞, |δ̇xi(·)|∞} ≤ Δxi

max{|δyi(·)|∞, |δ̇yi(·)|∞} ≤ Δyi

max{|δωi(·)|∞, |δ̇ωi(·)|∞} ≤ Δωi

(2)

whereΔxi,Δyi,Δωi are known positive constants. In this work,
all potential parametric uncertainties can be lumped into the
terms δxi(·), δyi(·), δωi(·). Control inputs τ1i and τ2i represent
scaled surge force and yaw moment, respectively, as shown
in Fig. 1. We assume that the (virtual or real) group leader
can also be represented by the model (1a), (1b), and its state
vector (x0, y0, θ0, vx0, vy0, ω0) is assumed to be bounded with
a bounded first derivative for all t ≥ 0.

From rigid body dynamics, the term fyi(·) in the sway force-
balance equation of (1b) in body-fixed frame consists of inertial
force terms fC

yi(·) and damping terms fD
yi(·), i.e., fyi = fC

yi +

fD
yi. The inertial force terms fC

yi(·) are quadratic in velocity such
that the component in the ybi-direction is only a function of vxi
and ωi, i.e., fC

yi = fC
yi(vxi, ωi), and always points to the negative

ybi-direction such that

∂fC
yi

∂vxi
(ωi) = −ηiωi, ηi > 0.

Furthermore, the component of the hydrodynamic damping
force along the ybi-axis is only related to vyi, i.e., fD

yi = fD
yi(vyi),

and its direction is always opposite to vyi such that
∂fD

yi

∂vyi
(vyi) ≤

0.

C. Notions From Graph Theory

We use graph theory to define the communication network
among the vessels of the network. Network topology of the
N + 1 surface vessels is defined by a digraph G = (V, E) where
V = {0,1, . . . ,N} and E ⊆ V × V represent its sets of vertices
and edges, respectively. There are N + 1 nodes whose node
dynamics are described in (1a), (1b). The set of neighboring
nodes with edges connected to node i is denoted by Ωi =
{j | (i, j) ∈ E}. The edges represent communication between
the nodes such that (follower) node i can obtain information
from (leader) node j for feedback control purposes, if j ∈ Ωi, as
shown in Fig. 1. Here, we use the terms “leader” and “follower”
only to distinguish between agents that send information and
those that receive them. In order to incorporate a combination
of neighboring feedback information from neighboring nodes,
we let wij be a nonnegative constant weighing factor for any
i, j ∈ V . These factors are selected such that

∑
j∈Ωi

wij = 1 if
(i, j) ∈ E , and wij = 0 otherwise. We assume that there exists
at least one directed path starting from the group leader 0 to any
other node in the network, which implies that graph G contains
a directed spanning tree [19]. We also assume there is no loop
in G, and the group leader does not receive any communication
from other nodes. For more details on algebraic graph theory,
see [19].

D. Problem Formulation

The objective of distributed formation control is to design
a controller for each agent such that it coordinates its motion
relative to its neighbors, and the network asymptotically con-
verges to a predefined geometric pattern. Moreover, during this
coordinated motion, each agent should be able to bypass any
obstacle and avoid collisions with other agents. The desired
geometric pattern of vessel network in terms of planar posi-
tions is defined by a set of constant position offset vectors
{(dxij, dyij) ∈ R2 : i, j ∈ V, i �= j}. Furthermore, each obstacle
considered in this article is assumed to be surrounded by an
ellipse described by the equation lo(t, χ1, χ2)=0, where o is
the obstacle number

lo =

[
χ1 cosφo + χ2 sinφo

ao

]2
+

[
χ2 cosφo − χ1 sinφo

bo

]2
− 1

χ1 = x− xo(t) and χ2 = y − yo(t). (xo(t), yo(t)) denotes the
position of the ellipse center in the global frame, φo(t) is the
ellipse orientation angle, and ao and bo are the semimajor and
semiminor axes of the ellipse, respectively. Specifically, we will
solve the following two problems.
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Robust formation control problem: Design control laws
τ1i, τ2i for each ith follower without global position measure-
ments such that:

1) all states in the closed-loop system are uniformly bounded
for all t ≥ 0;

2) all the vessels in the network can maintain a prescribed
formation in the sense that

lim
t→∞

∣∣∣∣∣∣
∑
j∈Ωi

wij

[
xi(t)− xj(t)− dxij
yi(t)− yj(t)− dyij

]∣∣∣∣∣∣ = 0; (3)

3) all bounded modeling uncertainties and disturbances can
be rejected or attenuated in the closed-loop system.

Distributed obstacle avoidance problem: Design control laws
τ1i, τ2i for each ith follower without global position measure-
ments such that the ith follower is able to bypass any (moving)
oth obstacle on its path in the sense that

lo(t, x̃io, ỹio) > 0 ∀t ≥ 0 (4)

where (x̃io, ỹio) = (xi(t)− xo(t), yi(t)− yo(t)) is the relative
position error.

Remark 1: In general, the network position offsets may be
smooth time-varying vectors (dxij(t), d

y
ij(t)), making the forma-

tion time varying. Although, in this article, we focus on time-
invariant formations, all the results can be easily generalized to
the case of time-varying formations. This, however, is omitted
in our discussion to simplify the notation and derivations. More-
over, the condition (4) implies that the ith vessel will never enter
the oth elliptical region and, thus, will never touch the obstacle
on its path.

E. Feasible Reference Trajectories Generation

Due to the underactuated nature of surface vessels, the refer-
ence pose trajectory dictated by the formation cannot be arbitrar-
ily assigned for each ith follower. That is, given the relative pose
measurements (xi(t)− xj(t), yi(t)− yj(t), θi(t)− θj(t)) and
the desired formation pose offset vectors (dxij, d

y
ij, d

θ
ij), where

j ∈ Ωi and dθij denotes the desired orientation offset between
the ith and jth agents, the feasible orientation trajectory must
be determined based on the vessel model. For illustration, let us
denote the position reference trajectory for the ith vessel by

x̄i(t) :=
∑
j∈Ωi

wij

[
xj(t) + dxij

]
, ȳi(t) :=

∑
j∈Ωi

wij

[
yj(t) + dyij

]
.

Then, the feasible orientation trajectory θ̄i(t) is forced to obey
the same second-order nonholonomic constraint of the ith vessel.
Thus, the feasible orientation trajectory θ̄i(t) is the solution
to the second equation in (1b), which is a first-order ordinary
differential equation with respect to θ̄i(t)

˙̄vyi(t) = fyi

(
v̄xi(t), v̄yi(t),

˙̄θi(t)
)

(5)

subjected to the initial condition θ̄i(0) = θ̄i,0. The terms v̄xi(t)
and v̄yi(t) are derived from the kinematic model (1a)[

v̄xi(t)

v̄yi(t)

]
=

[
cos θ̄i(t) sin θ̄i(t)

− sin θ̄i(t) cos θ̄i(t)

][
˙̄xi(t)

˙̄yi(t)

]

with ˙̄xi(t) =
∑

j∈Ωi
wijẋj(t) and ˙̄yi(t) =

∑
j∈Ωi

wijẏj(t).
Therefore, the feasible orientation trajectory θ̄i(t) is obtained by
numerically integrating (5) in real time given the position offset
(dxij, d

y
ij). Finally, the feasible orientation offset dθij is selected

as dθij(t) := θ̄i(t)− θj(t).
As pointed out in Remark 1, the feasible reference trajectory

generation procedure described above can also be used in the
time-varying formation. In that case, the time-varying position
offset (dxij(t), d

y
ij(t)) should be a smooth function, and all the re-

maining feasible trajectory generation procedures are the same.
It is noted that only the time derivatives of x̄i(t) and ȳi(t) are used
in the feasible reference trajectory generation, and the global
position measurements (xj(t), yj(t)) are not required.

III. FORMATION CONTROL FORMULATION

A. Reduced-Order Error Dynamics

Here, we introduce a velocity transformation that results in
reduced-order error dynamics to simplify the formation control
design. Let qi := [xi, yi, θi]


 represent the configuration vector
of agent i, q̄i := [x̄i, ȳi, θ̄i]


 the reference trajectory, and vi :=
[vxi, vyi, ωi]


 the velocity vector. It can be seen that if, for any
ith agent, qi(t) → q̄i(t) as t → ∞, then (5) holds. Thus, the
formation error vector zi = [z1i, z2i, z3i]


 for agent i is defined
using the following transformation:

zi := J (θi) [(q̇i − ˙̄qi) + Λ (qi − q̄i)] (6)

where J(θi) is the orthogonal rotation matrix

J(θi) :=

⎡
⎢⎣ cos θi sin θi 0

− sin θi cos θi 0

0 0 1

⎤
⎥⎦

and Λ = diag{λ1, λ2, λ3} is a positive definite matrix. The
following lemma is needed for the main result of this section.

Lemma 1: Consider the formation error zi(t) given in (6),
whereΛ = diag{λ1, λ2, λ3} is a positive definite matrix. For the
ith follower agent, if zi(t) is uniformly bounded for all t ≥ 0 and
zi → 0 as t → ∞, then the robust formation control problem is
solved.

Proof: Since J(θi) is an orthogonal matrix, zi ∈ L∞ implies
[(q̇i − ˙̄qi) + Λ(qi − q̄i)] ∈ L∞, and zi(t) → 0 as t → ∞ implies
that [(q̇i − ˙̄qi) + Λ(qi − q̄i)] → 0 as t → ∞, which can be writ-
ten as

d

dt
(qi − q̄i) = −Λ(qi − q̄i) + oi(t), lim

t→∞ oi(t) = 0 (7)

where oi(t) := J(θi)

zi(t). Then from the converging-input

converging-state property of stable linear systems[20, p. 59],
we conclude that (qi(t)− q̄i(t)) is uniformly bounded and
the origin of (7) is asymptotically stable, which implies that
(qi(t)− q̄i(t)) → 0 and (q̇i(t)− ˙̄qi(t)) → 0 as t → ∞. Since
this convergence holds for all agents, we conclude that (3)
holds. �

Referring to Lemma 1, the objective of formation tracking
control design is to drive zi(t) to zero asymptotically for all
i = 1, . . . , N . The error dynamics in terms of zi are determined
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by taking the time derivative of (6)

żi = J̇ [(q̇i − ˙̄qi) + Λ (qi − q̄i)] + J [(q̈i − ¨̄qi) + Λ (q̇i − ˙̄qi)] .
(8)

Substituting (1a) and (1b) for the ith and jth agents into the error
dynamics (8) and using the feedback transformation

τ1i = −fxi + c(i−ī) ( ˙̄vxi − ω̄iv̄yi) + s(i−ī) ( ˙̄vyi + ω̄iv̄xi)

− λ1[vxi − c(i−ī)v̄xi − s(i−ī)v̄yi] + ωivyi + u1i (9)

τ2i = −fωi + ˙̄ωi − λ3 (ωi − ω̄i) + u2i (10)

where c(i−ī) = cos(θi − θ̄i) and s(i−ī) = sin(θi − θ̄i), we de-
rive the reduced-order error dynamics in the following simple
structured form:

żi =

⎡
⎢⎣ ωiz2i

−ωiz1i

0

⎤
⎥⎦+

⎡
⎢⎣u1i

Ψi

u2i

⎤
⎥⎦+

⎡
⎢⎣δxiδyi

δωi

⎤
⎥⎦ . (11)

The term Ψi in (11) is given in terms of relative orientation and
motion of the agent i and its neighbors as

Ψi = ωivxi + s(i−ī) ( ˙̄vxi − ω̄iv̄yi)− c(i−ī) ( ˙̄vyi + ω̄iv̄xi)

+ λ2[vyi + s(i−ī)v̄xi − c(i−ī)v̄yi] + fyi. (12)

It is noted that the reduced-order error system (11) has two
structural properties: 1) the first term in the right-hand side
is reminiscent of the skew-symmetric structure, which is com-
monly seen in the model reference adaptive control systems [21];
2) the nominal part of (11) is reminiscent of a cascaded system,
i.e., z3i-dynamics are decoupled from (z1i, z2i)-dynamics, and
z3i(t) → 0 implies that the interconnected term Ψi(t) → 0.
These two structural properties are used later in the control
design. It follows from (11) that the formation control problem
is reduced to deigning the new control inputs (u1i, u2i) that
stabilize the reduced-order error dynamics (11) for all vessels
i = 1, . . . , N .

Remark 2: Compared with the vessel model, the error system
(11) has only three states that must be stabilized to achieve the
desired formation. The control law is distributed since (11) and
the feedback transformations (9), (10) do not require the global
position measurements and only depend on the relative pose of
the ith and jth agents and their velocities and accelerations in
their own body-fixed frames, which can be measured by onboard
sensors (e.g., Lidar, camera, gyroscope, speedometer, IMU, etc.)

B. Formation Control Design

The error system (11) is structured such that the orientation
error z3i is decoupled from the positioning errors (z1i, z2i)
and, thus, can be independently controlled. We emphasize that
different control laws may be applied to stabilize the error system
(11), for instance, passivity-based control. However, because
the error system (11) is not in the (lower-triangular) normal
form, traditional control methods, such as the first-order sliding
mode control or backstepping control, may impose additional
strict conditions on the angular velocity (for example, the an-
gular velocity ω0(t) in [18] is assumed to be separated from

zero). While any nonlinear control technique may be applicable
under this framework, we choose supertwisting control in this
work due to its simplicity and strong robustness, which only
requires boundedness of unknown modeling uncertainties and
disturbances. More importantly, the supertwisting control takes
advantage of the structural properties of the error system (11),
and only a mild condition on the angular velocity is needed, as
we shall see later.

We choose the supertwisting control laws as{
u1i = −k1i|z1i| 12 sign(z1i) + ξ1i
ξ̇1i = −k2i sign(z1i)

(13)

{
u2i = −k3i|z3i| 12 sign(z3i) + ξ2i
ξ̇2i = −k4i sign(z3i)

(14)

where k1i, k2i, k3i, and k4i are positive control gains. It follows
that under control law (13), the closed-loop (z1i, z2i)-dynamics
are given by

ż1i = −k1i|z1i| 12 sign(z1i) + ρ1i + ωiz2i

ρ̇1i = −k2i sign(z1i) + δ̇xi

ż2i = −ωiz1i +Ψi + δyi

(15)

where ρ1i := ξ1i + δxi. Furthermore, under control law (14), the
closed-loop z3i-dynamics are given by

ż3i = −k3i|z3i| 12 sign(z3i) + ρ2i

ρ̇2i = −k4i sign(z3i) + δ̇ωi

(16)

where ρ2i := ξ2i + δωi. Note that the closed-loop system (15),
(16) has a cascade-like structure, i.e., z3i enters the (z1i, z2i)-
dynamics via the interconnection term Ψi. It is also important to
note that the controllers (9), (10), (13), and (14) are completely
distributed and independent of global position measurements.
The following theorem provides the main result of this section.

Theorem 1 (Formation Control): Consider a network of
N + 1 heterogeneous underactuated surface vessels with the
communication graph G, the node dynamics given by (1a), (1b),
and the error dynamics given by (11). Assume that the angular
velocity of the group leader is persistently exciting (PE), i.e.,
there exist two constants T > 0, μ > 0 such that ω0(t) satisfies∫ t+T

t

|ω0(τ)|dτ ≥ μ ∀t ≥ 0.

1) Then, without perturbations (i.e., δxi ≡ δyi ≡ δωi ≡ 0),
under the supertwisting control laws (13), (14) with pos-
itive gains k1i, k2i, k3i, and k4i, the origin of closed-loop
error system (15), (16) is uniformly globally asymptoti-
cally stable (UGAS).

2) If the perturbations δxi(·), δyi(·), δωi(·) are bounded
with bounded derivatives such that (2) holds, and the
unmatched uncertainty δyi(·) vanishes with respect to
z2i, i.e., |δyi(·)| ≤ κi|z2i| with κi > 0, then with k2i >
Δxi, k4i > Δωi, and k1i, k3i sufficiently large, the origin
of the closed-loop error system (15), (16) is UGAS.

Finally, together with the feedback transformation (9), (10),
the robust formation control problem is solved.
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Proof:
1) Note first that the “upper-left corners” of system (15) (i.e.,

under z2i ≡ 0) and system (16) are standard supertwisting
system. If the control gains k1i, k2i, k3i, k4i are positive,
then the corresponding strict Lyapunov functions can be
constructed [22, Th. 1]. That is, for every positive definite
matrix Q1i > 0 and Q3i > 0, the algebraic Lyapunov
equations

A

1iP1i + P1iA1i = −Q1i, A



3iP3i + P3iA3i = −Q3i

(17)
have unique positive definite solutionsP1i > 0 andP3i >
0, where

A1i =

[
− 1

2k1i
1
2

−k2i 0

]
, A3i =

[
− 1

2k3i
1
2

−k4i 0

]
.

Then, V1i(z1i, ρ1i) = ζ
1iP1iζ1i and V3i(z3i, ρ2i) =
ζ
3iP3iζ3i are strict Lyapunov functions for system
(15) with z2i ≡ 0 and (16), respectively, where
ζ1i = [|z1i|1/2, ρ1i]
 and ζ3i = [|z3i|1/2, ρ2i]
, and
their time derivatives are negative definite

V̇1i = −|z1i|−1/2ζ
1iQ1iζ1i, V̇3i = −|z3i|−1/2ζ
3iQ3iζ3i.

Thus, the origin of system (16) is finite-time stable and
z3i(t) reaches zero in finite time. It follows from the
definition of z3i that (θi − θ̄i)

exp−→ 0 and (ωi − ω̄i)
exp−→ 0

as t → ∞. Then, consider the nominal part of (15),
(i.e., (15) with Ψi ≡ 0). It follows from Lemma 3 in
the Appendix that system (15) with Ψi ≡ 0 is uniformly
globally exponentially stable (UGES). Next, it follows
from s(i−j)

exp−→ 0 and c(i−j)
exp−→ 1 that (12) reduces to

Ψi
exp−→ (v̇yi − ˙̄vyi) + λ2 (vyi − v̄yi) + ω̄i (vxi − v̄xi)

(18)

and (9) reduces to

(v̇xi − ˙̄vxi)
exp−→ −λ1 (vxi − v̄xi) + ω̄i (vyi − v̄yi) .

(19)
From the model in Section II-B, we have

(v̇yi − ˙̄vyi) = fyi (vxi, vyi, ωi)− fyi (v̄xi, v̄yi, ω̄i)

=
[
fC
yi(vxi, ωi)− fC

yi(v̄xi, ω̄i)
]
+
[
fD
yi(vyi)− fD

yi(v̄yi)
]
.

(20)

Then, (19) and (20) can be written as[
v̇xi − ˙̄vxi

v̇yi − ˙̄vyi

]
=

[
−λ1 ω̄i(t)

−ηiω̄i(t) Di(t)

][
vxi − v̄xi

vyi − v̄yi

]
+ o(t)

(21)
where o(·) : R → R2 and |o(t)| exp−→ 0; Di(t) :=
[fD

yi(vyi)− fD
yi(v̄yi)]/[vyi − v̄yi]. It follows from the

vessel model in Section II-B that Di(t) ≤ 0 for all
t ≥ 0. Then, from Lemma 3 again, we conclude that
the origin of system (21) is UGES, which implies that
Ψi

exp−→ 0. Finally, we conclude that the origin of full
dynamics (15), (16) is UGAS using the output injection

lemma [23, Proposition 3] by considering that Ψi ∈ L2

is the uniformly integrable output.
2) If δyi ≡ 0 and if the gains k2i > Δxi, k4i > Δωi, and

k1i, k3i are sufficiently large, then it follows from [22,
Th. 2] that for some positive definite matrices Q1i > 0
and Q3i > 0, the algebraic Lyapunov equations (17) have
positive definite solutions P1i > 0 and P3i > 0, and thus,
V1i and V3i are the strict Lyapunov functions for system
(15) with z2i ≡ 0 and (16), respectively. If δyi(·) vanishes
with respect to z2i, then it follows from [21, Lemma 9.1]
that the origin of the nominal part of the system (15) is
UGES if k1i and k3i are sufficiently large. Then, the rest
of the proof is the same as 1) and the origin of error
dynamics (15), (16) is UGAS.

Finally, we conclude that the robust formation control prob-
lem is solved from Lemma 1. �

Remark 3: A selection rule for the gains k1i, k3i is such that
the “upper left corners” of system (15) (i.e., z2i ≡ 0) and system
(16) are finite-time stables. The selection rule for sufficiently
large control gains k1i, k3i is given by [24]

k1i >

√
2(k2i +Δxi)2

k2i −Δxi
, k3i >

√
2(k4i +Δωi)2

k4i −Δωi
.

Remark 4: Although in Theorem 1-2) we assume that un-
matched uncertainty δyi(·) vanishes with respect to z2i to guar-
antee the asymptotic stability of the error system, it should be
noted that sea currents and waves are nonvanishing perturbations
in practice. Other perturbations δxi(·), δωi(·) are assumed to be
simply bounded with bounded derivatives since control inputs
directly affect surge and yaw motion. In order to stabilize the
lateral dynamics, we have to make an assumption about van-
ishing lateral perturbations due to the fact that the vehicles are
underactuated. Note that asymptotic stability is less practical
under unknown unmatched disturbances. However, as pointed
in [25], in marine practice, the hydrodynamic damping forces in
the second equation of (1b) are dominant in the sway direction.
As a result, the sway velocity of the surface vessel is passive
bounded, and thus, it is uniformly ultimately bounded [26] if
δyi(·) is a nonvanishing perturbation. Moreover, as shown in
recent works on underactuated systems [27], [28], it is still
possible to reject the unknown unmatched perturbations δyi(·)
using disturbance observer-based sliding mode control.

IV. DISTRIBUTED OBSTACLE AVOIDANCE

A. Elliptical Limit Cycles

Obstacle and collision avoidance is essential in formation
control of vehicle networks. In this section, we present a dis-
tributed robust obstacle avoidance approach based on the limit
cycle design presented in [29]. The method proposed in [29] is
to define transient reference trajectories using dynamic systems
with elliptical limit cycles. Driven by practical considerations,
we assume finite number of obstacles as well as finite number of
obstacle encounters. We assume that every obstacle is enclosed
by an ellipse, which also serves as a stable limit cycle, and thus,
a trajectory starting outside the ellipse will never enter it. Most
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Fig. 2. Top view of the obstacle avoidance of underactuated surface
vessels i and obstacle o.

closed shapes can be efficiently encircled by an ellipse and when
two or more obstacles are too close to each other, they can be
approximately viewed as a single obstacle enclosed by a larger
ellipse.

To illustrate, consider the ith surface vessel in the neighbor-
hood of an arbitrarily-shaped obstacle o and surrounded by an
ellipse marking the forbidden region that the vessel must not
enter, as shown in Fig. 2. Next, consider the following system
that represents planar particle motion whose solution converges
to the limit cycle lo(t, χ1, χ2) = 0:

χ̇1 = h1(t, χ1, χ2)− kllo(t, χ1, χ2)χ1

χ̇2 = h2(t, χ1, χ2)− kllo(t, χ1, χ2)χ2

(22)

where kl > 0 is a constant that determines the rate of conver-
gence to the limit cycle. Functions h1 and h2 represent the pla-
nar particle motion kinematics on the ellipse lo(t, χ1, χ2) = 0,
which are given by

h1 (t, χ1, χ2) = −χ2φ̇o +
�o

aobo
(h11χ1 − h12χ2)

h2 (t, χ1, χ2) = +χ1φ̇o +
�o

aobo
(h21χ1 − h11χ2)

where

h11 :=
(
a2o − b2o

)
sinφo cosφo

h12 := a2o cos
2 φo + b2o sin

2 φo

h21 := b2o cos
2 φo + a2o sin

2 φo

and �o is a constant control parameter representing the angular
velocity of the particle moving around the ellipse. Note that
�o > 0 represents the counterclockwise rotation of the particle,
and �o < 0 represents the clockwise rotation of the particle.
The following lemma illustrates that the ellipse lo(t, χ1, χ2) = 0
also serves as a stable limit cycle.

Lemma 2: The periodic solution to planar system (22) on the
ellipse lo(t, χ1, χ2) = 0 given by

χ1(t) = ao cosφo cos (�ot)− bo sinφo sin (�ot)

χ2(t) = ao sinφo cos (�ot) + bo cosφo sin (�ot)
(23)

is asymptotically orbitally stable.

Proof: Taking the time derivative of (23), one can verify that
(23) is a solution to (22), and the closed orbit generated by (23)
is a positively invariant set. Consider the following Lyapunov
candidate function:

U(t, x, y) =
1

4
lo(t, χ1, χ2)

2

and take its time derivative along the trajectory of (22)

U̇ =
1

2
lo(t, χ1, χ2) l̇o(t, χ1, χ2)

= − kl
a2ob

2
o

lo(t, χ1, χ2)
2
[
h21χ

2
1 + h12χ

2
2 − 2h11χ1χ2

]
= −kllo(t, χ1, χ2)

2 [lo(t, χ1, χ2) + 1] ≤ 0.

Thus, for all (χ1, χ2) �= (0, 0), lo(t, χ1, χ2) �= 0 and all t ≥ 0,
we have U̇ < 0 since lo + 1 > 0 everywhere on the plane except
at the point (x0, y0) where U̇ = 0. Thus, from the invariance
principle, we conclude that the invariant set {(χ1, χ2) ∈ R2 :
lo(t, χ1, χ2) = 0} is the asymptotically stable. �

Lemma 2: illustrates that for any initial time t0, if the
initial condition of (22) (χ1(t0), χ2(t0)) �= (0, 0), that is,
x(t0) �= xo(t0), y(t0) �= yo(t0), then lo(t, χ1(t), χ2(t)) is uni-
formly bounded for all t ≥ t0 and converges to zero asymp-
totically. Furthermore, if initial condition is outside the el-
lipse, i.e., lo(t0, χ1(t0), χ2(t0)) > 0, then the trajectory of
lo(t, χ1(t), χ2(t)) converges to zero exponentially. In this case,
for all t ≥ t0, we have lo(t, χ1(t), χ2(t)) > 0, and thus, the
trajectory of (x(t), y(t)) will never cross the ellipse.

Based on the discussion above, for the ith vessel, if the
position trajectory (xi(t), yi(t)) is a solution to the planar system
(22), then its position trajectory is bounded for all times and
exponentially converges to the stable elliptical limit cycle gen-
erated by the planar system (22). More importantly, the vessel
will never cross the limit cycle, which is the foundation of our
obstacle avoidance strategy.

B. Obstacle Avoidance Control Design

Similar to the formation control design, in the neighborhood
of the obstacle o, the obstacle avoidance error ζi = (ζ1i, ζ2i) for
the agent i is defined using the following transformation:[
ζ1i

ζ2i

]
= J2(θi)

[
˙̃xio − h1(t, x̃io, ỹio) + kllo(t, x̃io, ỹio)x̃io

˙̃yio − h2(t, x̃io, ỹio) + kllo(t, x̃io, ỹio)ỹio

]

where

J2(θi) =

[
cos θi sin θi

− sin θi cos θi

]
.

The reason of defining (ζ1i, ζ2i) in this form is that if (ζ1i, ζ2i) ≡
(0, 0), then (x̃io(t), ỹio(t)) must be a solution of planar system
(22), and the position trajectory (xi(t), yi(t)) exponentially
converges to the elliptical limit cycle lo(t, χ1, χ2) = 0 without
crossing it. We calculate the obstacle avoidance error dynamics
by taking the time derivative of ζi. Under the feedback transfor-
mation

τ1i = − fxi + ωivyi − cos θi

(
kl ˙̃xiolo + klx̃io l̇o − ẍo − ḣ1

)
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− sin θi

(
kl ˙̃yiolo + klỹio l̇o − ÿo − ḣ2

)
+ u1i (24)

the obstacle avoidance error dynamics become[
ζ̇1i

ζ̇2i

]
=

[
ωiζ2i

−ωiζ1i

]
+

[
u1i

Ξi

]
+

[
δxi

δyi

]
(25)

where

Ξi := fyi + ωivxi − sin θi

(
kl ˙̃xiolo + klx̃io l̇o − ẍo − ḣ1

)
+ cos θi

(
kl ˙̃yiolo + klỹio l̇o − ÿo − ḣ2

)
.

Compared to the reduced-order error system (11), the error
system (25) has a similar structure property, that is, the first
term in the right-hand side is reminiscent of the skew-symmetric
structure. Thus, we choose a similar supertwisting control law
as {

u1i = −k1i|ζ1i| 12 sign(ζ1i) + ξ1i
ξ̇1i = −k2i sign(ζ1i)

(26)

wherek1i, k2i are positive control gains. Furthermore, ifvxi �= 0,
then Ξi can be controlled by viewing ωi as a virtual control
input and using backstepping procedure to obtain τ2i. The virtual
control is chosen as

ω̂i = − 1

vxi

[
fyi − sin θi

(
kl ˙̃xiolo + klx̃io l̇o − ẍo − ḣ1

)

+cos θi

(
kl ˙̃yiolo + klỹio l̇o − ÿo − ḣ2

)]
and the super-twisting control τ2i is designed as{

τ2i = −fωi + ˙̂ωi − k3i|ω̃i| 12 sign(ω̃i) + ξ2i
ξ̇2i = −k4i sign(ω̃i)

(27)

where k3i, k4i are positive control gains, and ω̃i := ωi − ω̂i.
Then, under the control law (26), the closed-loop system of
(ζ1i, ζ2i)-dynamics become

ζ̇1i = −k1i|ζ1i| 12 sign(ζ1i) + ρ1i + ωiζ2i

ρ̇1i = −k2i sign(ζ1i) + δ̇xi

ζ̇2i = −ωiζ1i + Ξi + δyi (28)

where ρ1i := ξ1i + δxi, and under control law (27), the closed-
loop system of ω̃i-dynamics become

˙̃ωi = −k3i|ω̃i| 12 sign(ω̃i) + ρ2i

ρ̇2i = −k4i sign(ω̃i) + δ̇ωi. (29)

We emphasis that the obstacle avoidance controllers given in
(24), (26) and (27) are completely independent of global position
measurements of both the vessel and obstacle. The next theorem
provides the main result of this section.

Theorem 2 (Obstacle Avoidance): Let the surface vessel i
given by (1a) and (1b) be in the neighborhood of an obstacle
o with the obstacle avoidance error dynamics given by (25).
Assume that vxi �= 0, and the angular velocity of the vessel is
PE, i.e., there exist two constants T > 0, μ > 0 such that ωi(·)

satisfies ∫ t+T

t

|ωi(τ)|dτ ≥ μ ∀t ≥ 0.

1) Then, without perturbations, i.e., δxi ≡ δyi ≡ δωi ≡ 0,
under the supertwisting control laws (26), (27) with pos-
itive control gains k1i, k2i, k3i, and k4i, the origin of the
closed-loop system (28), (29) is UGES.

2) If the perturbations δxi(·), δyi(·), δωi(·) are bounded with
bounded derivatives satisfying (2), and δyi(·) vanishes
with respect to z2i, i.e., |δyi(·)| ≤ κi|z2i| with κi > 0,
then, with k2i > Δxi, k4i > Δωi, and k1i, k3i sufficiently
large, the origin of the closed-loop system (15), (16) is
UGES.

Finally, together with the feedback transformation (24), the
distributed obstacle avoidance problem is solved.

Proof: The proof is closely parallel to that of Theorem 1.
1) Similar to the proof of Theorem 1, the “upper-left corners”

of system (28) (i.e., under ζ2i ≡ 0) and system (29) are
standard supertwisting systems. It follows from [22] that
if the control gains k1i, k2i, k3i, k4i are positive, then the
system (28) with ζ2i ≡ 0 and system (29) are finite-time
stable. Thus, ω̃i reaches zero in a finite time, which
implies that ωi = ω̂i and Ξi = 0 after some finite time T .
Next, note that the finite-time stability of the “upper-left
corner” of (28) also implies exponential stability. Then,
from Lemma 3 and the PE assumption of ωi(·), we
conclude that the nominal part of system (28) is UGES.
Finally, it follows from the output injection lemma [23,
Proposition 4] that the origin of the full dynamics (28),
(29) is UGES by noting thatΞi is the uniformly integrable
output.

2) If δyi ≡ 0 and if the control gains k2i > Δxi, k4i > Δωi,
and k1i, k3i are sufficiently large, then it follows from [22]
that the system (28) with ζ2i ≡ 0 and system (29) are
finite-time stable. If δyi(·) satisfies the vanishing per-
turbation condition with respect to z2i, then it follows
from [21, Lemma 9.1] that the origin of the nominal part
of the system (15) is UGES if k1i and k3i are sufficiently
large. Then the rest of the proof is the same as 1) and
the origin of the closed-loop error systems (15), (16) is
UGES. Finally, together with Lemma 2, we conclude that
the distributed obstacle avoidance problem is solved.

Remark 5: From the proof of Lemma 2, the convergence
rate of lo(t, x̃io, ỹio) is determined by the control parameter kl
and can be estimated using the Lyapunov function U(t, xi, yi).
Furthermore, the error ζi → 0 implies that the position trajectory
(xi(t), yi(t)) converges to a solution to the planar system (22).
By designing the appropriate convergence speed of ζi, one can
guarantee that (xi(t), yi(t)) converges to the elliptical limit cycle
without crossing it.

C. Distributed Obstacle Avoidance Algorithm

Consider a network of N + 1 heterogeneous underactuated
surface vessels in coordinated motion with the controller given
in Theorem 1. Assume that the approximate sizes and locations
of obstacles in the vicinity of any surface vessel can be measured
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by its onboard sensors, e.g., camera, Lidar, etc. The strategy for
obstacle avoidance in the coordinated motion of surface vessel
networks is described as follows.

Step 1: All obstacles including other vessels in the vicinity of
the ith vessel are identified and indexed aso ∈ {1, 2, . . . ,M} =:
O. The obstacles are approximated and enclosed by ellipses
based on their sizes, orientations, and locations. The inner
regions of the ellipses Qo := {(x, y) : lo(t, x̃io, ỹio) < 0} are
prohibited, i.e., vessels are forbidden to enter these regions.

Step 2: Define a protected region Po for any ellipse such that
Po := {(x, y) : dist{(x, y),Qo} ≤ εo, lo(t, x̃io, ỹio) ≥ 0},
where εo > 0 is a constant, and dist{(x, y),Qo} =
inf(p,q)∈Qo

|(x, y)− (p, q)|. Then, the safe region of obstacle o
is defined as So := R2 \ {Po ∪ Qo}, as shown in Fig. 2. We
also assume that Po1

∩ Po2
= ∅, for any o1,o2 ∈ O, and all

the vessels are in the safe regions at the initial time.
Step 3: If the ith vessel is in the protected region of the oth

obstacle and if the direction of its velocity vector relative to the
obstacle is towardQo (i.e., vessel is on a collision course with the
obstacle), then the control strategy switches from the formation
control strategy given in Theorem 1 to the obstacle avoidance
control strategy given in Theorem 2. Note that if the ith vessel
is in the obstacle avoidance phase, its trajectory exponentially
converges to the elliptical orbit, and by selecting the control gains
min{k1i, k3i} > kl, its trajectory will never cross the ellipse.

Step 4: As soon as the obstacle is cleared, that is, the ellipse is
not blocking the agent’s direct path to its current desired position
(x̄i, ȳi), vessel i switches back to its formation tracking control
strategy given in Theorem 1.

Step 5: The ith vessel continues executing the formation task.
If a new obstacle is detected, then Steps 1–4 are repeated.

Remark 6: Note that for each vessel, switching into obstacle
avoidance mode occurs if it enters the protected region surround-
ing an obstacle and its relative velocity vector points toward the
obstacle. The limit cycle solution guarantees that the vessel will
go around the obstacle and at some point its relative velocity will
not be pointing toward the obstacle. In other words, the obstacle
is cleared and the vessels exit obstacle avoidance mode. If several
obstacles are tightly located, they can be enclosed by a single
larger ellipse. Based on practical considerations, we assume the
finite number of obstacles as well as obstacle encounters, and
once all obstacles are cleared, the control strategy switches back
to formation control strategy (13), (14) whose stability is proven
in Theorem 1.

V. VESSEL MODELS

Vessels are normally modeled with either diagonal or coupled
mass matrices and either linear or nonlinear hydrodynamic
damping. Our framework can be applied to any of these models.
In the simplest and most common form, when the ith vessel is
modeled with diagonal mass matrix and linear hydrodynamic
damping [8], the known terms in (1b) based on nominal param-
eters are given as

fxi =
m22,i

m11,i
vyiωi − d11,i

m11,i
vxi

fyi = −m11,i

m22,i
vxiωi − d22,i

m22,i
vyi

fωi =
m11,i −m22,i

m33,i
vxivyi − d33,i

m33,i
ωi (30)

wherem11,i andm22,i represent the vessel mass including added
mass effect and m33,i is the mass moment of inertia again
including the added mass effect. The terms d11,i, d22,i, d33,i
represent the hydrodynamic damping coefficients. If vessel i
is modeled with diagonal mass matrix and nonlinear hydrody-
namic damping, as in [30], then the known terms in (1b) take
the form

fxi =
m22,i

m11,i
vyiωi − d11,i

m11,i
|vxi|α11,i sign (vxi)

fyi = −m11,i

m22,i
vxiωi − d22,i

m22,i
|vyi|α22,i sign (vyi)

fωi =
m11,i −m22,i

m33,i
vxivyi − d33,i

m33,i
|ωi|α33,i sign (ωi) (31)

where α11,i, α22,i, and α33,i are used for power law represen-
tation of hydrodynamic damping.

In practice, a model that includes coupling terms in the mass
and hydrodynamic damping matrices may be more realistic. The
nominal model in this case is given as in [30]⎡
⎢⎢⎢⎣
m11,i 0 0

0 m22,i m23,i

0 m23,i m33,i

⎤
⎥⎥⎥⎦
⎡
⎢⎣v̇xiv̇yi

ω̇i

⎤
⎥⎦+
⎡
⎢⎣ −m22,ivyiωi −m23,iω

2
i

m11,ivxiωi

−md,ivxivyi +m23,ivxiωi

⎤
⎥⎦

+

⎡
⎢⎣d11,i 0 0

0 d22,i d23,i

0 d23,i d33,i

⎤
⎥⎦
⎡
⎢⎣vxivyi

ωi

⎤
⎥⎦ =

⎡
⎢⎣Fi

0

Ti

⎤
⎥⎦

where the parameters m23,i and d23,i are nonnegative. These
equations may be rewritten in the form of (1b) with the terms

fxi =
m22,i

m11,i
vyiωi +

m23,i

m11,i
ω2
i −

d11,i
m11,i

vxi

fyi = aωi

(
f ′
yi −

m23,i

m22,i
f ′
ωi

)
, τ1i =

Fi

m11,i

fωi = aωi

(
f ′
ωi −

m23,i

m33,i
f ′
yi

)
, τ2i =

Ti

m33,i
(32)

where

f ′
yi = −m11,i

m22,i
vxiωi − d22,i

m22,i
vyi − d23,i

m22,i
ωi

f ′
ωi =

md,i

m33,i
vxivyi − m23,i

m33,i
vxiωi − d23,i

m33,i
vyi − d33,i

m33,i
ωi

aωi =
m22,im33,i

m22,im33,i −m2
23,i

.

VI. SIMULATION RESULTS

We simulated two heterogeneous surface vessel networks
to validate the performance of the proposed robust formation
control and distributed obstacle avoidance algorithm. All the
parameters are given in SI units.
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Fig. 3. Directed-tree topology for (a) Example 1 and (b) Example 2.

Fig. 4. Paths of the six heterogeneous surface vessels in Example 1
where ‘‘d” indicates the leader’s desired trajectory.

Example 1: Consider a network of six heterogeneous under-
actuated surface vessels with the directed communication graph
shown in Fig. 3(a), where w31 = 0.5, w35 = 0.5 and all other
weighting coefficients are set to 1. The desired formation shape
of the group of vessels is an isosceles right triangle with the
leader vessel 0 located at the triangle’s apex. Vessels 4 and
2 are located at the other two vertices, vessels 1 and 4 are
located at the midpoints of the two equal sides, and vessel 3
is located at the midpoint of the base. The base and the height
of the triangle are set to 40 m and 20 m, respectively. In the
simulation, the leader is commanded to follow a sinusoidal path,
i.e., (x0d(t), y0d(t)) = (t, sin(t)).

We assume that vessels 0,1 are modeled by diagonal
mass matrix and linear hydrodynamic damping model (30),
vessels 2,3 are modeled by the nonlinear hydrodynamic
damping model (31), and vessels 4,5 are modeled by the
nondiagonal mass and hydrodynamic damping matrices.
The model parameters of vessels 0,1 are given as [31]
m11,i = 1.412,m22,i = 1.982,m33,i = 0.0354, d11,i = 3.436,
d22,i = 12.99, d33,i = 0.0864. The model parameters of vessels
2,3 are given as m11,i = 1.317,m22,i = 3.832,m33,i =
0.0926, d11,i = 5.252, d22,i = 14.14, d33,i = 0.0262, α11,i =
1.510, α22,i = 1.747, α33,i = 1.592. The model parameters
of vessels 4,5 are given as m11,i = 1.695,m22,i =
1.865,m33,i = 0.0275, d11,i = 2.72, d22,i = 13.4, d33,i =
0.0566,m23,i = 0.02, d23,i = −0.03. All vessels start from
rest at the initial positions shown in Fig. 4 and orientation
angles being 0 for vessels 0,1,2 and π/2 for vessels
3,4,5. To demonstrate robustness, we assume that the
unknown terms δxi, δyi, δωi consist of two parts, i.e., bounded
disturbances and modeling uncertainties. We apply disturbances
δ′xi(t) = δ′ωi(t) = 1 + 0.5 sin(t) + 0.5 sin(20t). Furthermore,
we assume that the nominal model parameters used in the
controllers contain ±10% errors representing the model

Fig. 5. Time history of the RMS of the three error states combined for
all vessels in Example 1.

Fig. 6. Time history of the configuration errors of the six surface ves-
sels in Example 1.

uncertainties. We also use ODE-based transitional trajectories
in the simulation in order to avoid the undesired nonsmooth
motion caused by large errors in the beginning of the motion
and switching of controllers [29].

The control gains and disturbance bounds are selected as λ1 =
λ2 = λ3 = 1, k1i = k2i = k3i = k4i = 5,Δxi = 4,Δyi = 3,
Δωi = 4, for i = 0, . . . , 5. To validate the obstacle avoidance
algorithm, we assume that a static obstacle o is located on the
desired path of the vessel 1, where (xo, yo) = (20,−15), and
the other parameters of the obstacle and control gains from
Theorem 2 are ao = 4, bo = 2.5, φo = π/2, εo = 4, �o =
0.2, kl = 5, k11 = k21 = k41 = 4, k31 = 10.

Simulation results are illustrated in Figs. 4– 6. Fig. 4 shows
the paths of all six surface vessels with the formations illustrated
at t = 0 s, 30 s, and 60 s. Fig. 5 shows the time history of the
root-mean squared (RMS) of the error states z1i, z2i and z3i
across the formation, i.e.,

RMSk =

√√√√1

6

5∑
i=0

(zki)2, k = 1, 2, 3.

The corresponding actual configuration error trajectories for the
six heterogeneous vessels are shown in Fig. 6.

In this simulation, the desired triangular formation is initially
achieved in approximately 22 s, as indicated by the convergence
of RMS values and the configuration errors of all six vessels
in Figs. 5 and 6. Then, vessel 1 enters the protected region Po

and switches to the obstacle avoidance mode. In the protected
regionPo, the trajectory of vessel 1 asymptotically converges to
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Fig. 7. Paths of the five heterogeneous surface vessels in Example 2.

the predefined elliptical limit cycle without crossing it. When the
reference trajectory of vessel 1 leaves the forbidden region Qo,
the vessel ignores the obstacle and switches to formation control
mode. Note that while vessel 1 is in obstacle avoidance mode,
vessel 2 keeps its formation position relative to 1, and vessel 3
continues to keep its formation position relative to both vessels1
and 5. Thus, the formation geometry deforms to allow obstacle
avoidance by 1. Next, vessel 2 enters the protected region Po

and switches to the obstacle avoidance mode. After the obstacle
is cleared by this vessel at approximately 42 s, it switches back
to formation mode. In this case, the motion of no other vessel
is affected since vessel 2 has no followers. Finally, the desired
formation is achieved after approximately 50 s.

Example 2: Consider a network of five heterogeneous un-
deractuated surface vessels with the connected communication
graph shown in Fig. 3(b), where the weighting coefficients
are set to w10 = 1, w20 = 1, w30 = 0.5, w31 = 0.5, w40 =
0.8, and w42 = 0.2. The desired formation shape of the four
follower vessels is a square with the leader vessel 0 located
at its center. The length of the square sides is 30 m. In the
simulation, the leader is commanded to follow a circle of radius
5 m centered at (10,10) and at a constant speed of 1 rad/s.
The models and parameters of vessels 0–4 are the same as
those given in Example 1. All vessels start from rest at initial
positions shown in Fig. 7 . Initial orientation angles are given as
θ0(0) = θ2(0) = θ3(0) = 0 and θ1(0) = θ4(0) = π/2.

The disturbance terms and nominal model parameters are
selected the same as in Example 1, and the formation con-
trol gains are selected as λ1 = λ2 = λ3 = 1 and k1i = k2i =
k3i = k4i = 6, for i = 0, . . . , 4. To validate the obstacle avoid-
ance algorithm, we assume that a static obstacle o1 and a
dynamic obstacle o2 are located at the paths of the ves-
sels. The parameters of the obstacles and control gains in
Theorem 2 are given by (xo1

, yo1
) = (−10, 10), (xo2

, yo2
) =

(−15 + t, 25), ao1
= 4, bo1

= 4, ϕo1
= 0, ao2

= 4, bo2
=

2, ϕo2
= 0, kl1 = 4, εo1

= 4, ro1
= −0.5, kl2 = 1, εo2

=
2, ro2

= 0.5, k1i = k2i = k4i = 6, k3i = 10, i = 1, 2, 3.
The simulation results are presented in Figs. 7–9. Fig. 7 shows

the paths of the five surface vessels avoiding the obstacles and
finally reaching the desired rectangular formation in approxi-
mately 60 s. Fig. 8 shows the time history of the RMS of the three
error states combined for the five follower vessels, while the

Fig. 8. Time history of the RMS of the three error states combined for
all vessels in Example 2.

Fig. 9. Time history the configuration errors of the five surface vessels
in Example 2.

time history of the configuration error for the five heterogeneous
vessels is shown in Fig. 9. These figures demonstrate that the
error dynamics and formation errors are initially stabilized in
approximately 30 s and then again after 60 s when all obstacles
are cleared.

In the simulation, after only a few seconds, vessels 1 and
3 almost simultaneously enter the protected regions Po2

and
Po1

, respectively, and switch to the obstacle avoidance mode.
In the protected region Po1

, vessel 3 asymptotically converges
to the elliptical limit cycle without crossing it. Obstacle o2 is
dynamic, and consequently, vessel 1 asymptotically converges
to the time-varying elliptical limit cycle without crossing it. After
detecting that the obstacles are cleared, vessels 1 and 3 switch
back to formation control mode. The formation is then achieved
after approximately another 15 s. Next, vessel 2 detects the
dynamic obstacle o2 and switches to obstacle avoidance mode.
After the obstacle is finally cleared at approximately 50 s, vessel
2 switches back to formation control mode and then the desired
rectangular formation is achieved in about 55 s.

VII. CONCLUSION

In this work, we present a displacement-based robust for-
mation control and distributed obstacle avoidance framework
for heterogeneous underactuated surface vessels. The frame-
work is based on the leader–follower model relying only on
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relative coordination and thus without requiring any global
position measurements of either agents or obstacles. Through
the generation of feasible trajectories and state transformation,
a structured reduced-order error system is developed whose
stabilization guarantees convergence of all vehicle states. Then,
a supertwisting control design is employed to stabilize the error
dynamics. The control law does not require simplification of the
vessel dynamics, is not limited to any specific vessel model, and
is shown to be robust with respect to modeling uncertainties and
bounded disturbances. A distributed obstacle avoidance scheme
for the coordinated motion of surface vessel networks is also
proposed by surrounding the obstacles with elliptical stable
limit cycles, which provide transient trajectories to navigate the
vessels around obstacles. It is shown that the network formation
continues to persist, albeit in a partially deformed shape, to avoid
collision with obstacles or other agents. Numerical simulations
are presented to illustrate the effectiveness and robustness of the
proposed framework in the presence of disturbances and moving
obstacles. The significance of this work is in that it combines
robust distributed control of heterogeneous underactuated ves-
sel networks without requiring global position measurements,
augmented with distributed obstacle avoidance capability. Our
future research will concentrate on the actuator saturation prob-
lem and formation control of three-dimensional vehicles.

APPENDIX

We use this lemma in our proof of Theorems 1 and 2.
Lemma 3 ([32, restated]): Consider the following system:

ẋ1 = f(t, x1) + ω(t)x2, ẋ2 = −pω(t)

[
∂V

∂x1

]

(33)

where x1 ∈ Rn1 , x2 ∈ R, f : R≥0 × Rn1 → Rn1 , ω : R≥0 →
Rn1 , V : R≥0 × Rn1 → R≥0, and p > 0 is a constant. Let the
following assumptions A1–A3 hold.

A1: There exist class K∞ functions α1(·) and α2(·), and
a positive definite function α3(·) such that, for all t ≥
0 and x1 ∈ Rn1 , α1(|x1|) ≤ V (t, x1) ≤ α2(|x2|), and
∂V
∂t + ∂V

∂x1
f(t, x1) ≤ −α3(|x1|), a.e.

A2: There exists continuous nondecreasing function β :
R≥0 → R≥0 such that, for all t ≥ 0 and x1 ∈ Rn1 ,
max{|f(t, x1)|, |∂V (t,x1)

∂x1
|} ≤ β(|x1|)|x1|, a.e.

A3: The function ω(·) is bounded, smooth, and PE with a
bounded first derivative.

Then, the origin of (33) is UGAS. Moreover, if the origin of
system ẋ1 = f(t, x1) is UGES, then the origin of (33) is UGES.
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