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a b s t r a c t

In this paper, we solve the distributed leader–follower simultaneous formation stabilization and
tracking control problem for heterogeneous planar underactuated vehicle networks without global
position measurements of the followers. The vehicles in the network are modeled as generic 3-
DOF planar rigid bodies with two control inputs, and are allowed to have identical or non-identical
dynamics. By incorporating graph theory, passivity-based control, partial stability theory, Matrosov’s
theorem and the persistence of excitation concept, a smooth formation control scheme is proposed to
simultaneously address the formation stabilization and formation tracking problems without switching.
Moreover, the structure of the controller is relatively simple compared to the existing controllers in
the literature, and thus, is practical and easy to implement. Simulations on a group of underactuated
vehicles including nonholonomic mobile robots and surface vessels are presented to demonstrate the
effectiveness of the proposed control scheme.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

A mechanical system is underactuated if it has fewer number
f independent actuators than its degrees of freedom. Planar
ehicle systems with first-order or second-order nonintegrable
onstraints are typical examples of this kind. Motion control of
lanar underactuated vehicle systems has received much con-
ideration in the last two decades due to its intrinsic nonlinear
roperties and practical applications [1–3]. As a consequence
f the underactuation, planar underactuated vehicles with zero
ravitational and buoyant field do not meet the Brockett’s neces-
ary condition [4] and thus cannot be asymptotically stabilized by
ontinuous pure-state feedback [5]. To circumvent this difficulty,
mooth time-varying feedback [6], discontinuous time-invariant
eedback [7], and hybrid feedback [8] have been developed for
he stabilization problem. Another obstruction is that there ex-
sts no universal continuous controller (even time-varying) that
an track an arbitrary feasible trajectory [9]. In contrast with
he case of fully-actuated systems, set-point stabilization cannot
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be considered as a special case of trajectory tracking. Thus, for
planar underactuated systems, trajectory tracking and set-point
stabilization usually are studied as two separated problems.

Controlled collective behaviors of multi-vehicle systems are
of particular interest in recent years due to their potential ap-
plications ranging from industry to military [10]. The distributed
formation control problem, which can be considered as classical
trajectory tracking or stabilization control problem extended to
the multi-agent systems, is one of the most actively studied topics
within the field of control engineering. The distributed formation
control consists of making all the agents form a predefined geo-
metrical configuration through local interactions with or without
a group reference [11]. In other words, each follower uses only lo-
cal information/measurements to achieve a global formation task.
It should be pointed out that in order to make formation relative
to global coordinates, at least one agent in the network (e.g., the
leader) needs to know its global positioning while the rest of the
formation does not. On the other hand, in case of a leaderless
network making a formation irrespective of the global coordi-
nates, no agent needs to know their global coordinates and only
relative measurements are required to guarantee the formation.
Among various control schemes, the leader–follower strategy is of
particular significance in many applications due to its simplicity
and scalability [12]. Within this framework, many research arti-
cles have addressed the problem of planar underactuated vehicle
formation control [13–15].

Because of the underactuation constraint, the formation sta-
bilization and the formation tracking problems usually are stud-
ied as two distinct problems in the literature. Consequently, all
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gents must know the control problem in advance, and switch
etween the two different types of controllers, i.e. formation
tabilization controller and formation tracking controller. How-
ver, switching between controllers may be impractical when the
ehicles operate in a fully autonomous mode [16]. Furthermore,
n a distributed network, it is only the group leader that knows
he group reference and the control objective, while no prior
nformation on the group reference trajectory is available to
ll other agents [17]. Therefore, it is more practical if the two
roblems can be solved using a single control architecture.

.2. Related works

The problem of simultaneous stabilization and tracking refers
o finding a single control law which can solve both stabiliza-
ion and tracking problems simultaneously without changing the
ontroller structure [18]. This problem was first addressed for
onholonomic mobile robots in [19] using a saturation feed-
ack and backstepping technique. Then, an output feedback con-
roller [20] and an adaptive controller [21] were proposed using
he same backstepping idea as in [19], where a sinusoid signal
s introduced in the angular velocity virtual control to handle
he set-point stabilization. In [16], a controller was proposed
or simultaneous stabilization and tracking of a mobile robot by
ntroducing a time-varying signal, where the signal facilitates the
onversion from a stabilization controller to a tracking controller
daptively and smoothly. Using the same saturation feedback
dea in [19], an input-restricted robust controller was proposed
n [22] to handle the parameter uncertainty and input constraints
or mobile robots. In [23], a uniform δ-persistently exciting (uδ-
PE) controller was proposed for nonholonomic mobile robots
and uniform global asymptotic stability (UGAS) for the origin of
the closed-loop system was established for the first time in the
literature.

Unlike nonholonomic mobile robots, a surface vessel with
only two available controls is under a nonintegrable second or-
der nonholonomic constraint and is not transformable into a
chained system. Thus, the controllers designed specifically for
mobile robots [16,19–23] cannot be extended to underactuated
surface vessels directly. The simultaneous stabilization and track-
ing problem for underactuated surface vessels was first addressed
in [24] using a high-gain feedback, which achieves tracking and
stabilization in the sense of global uniform ultimate boundedness
(GUUB). Based on Lyapunov’s direct method and backstepping
technique, a time-varying controller was developed in [25] which
guarantees the global asymptotic convergence of the stabilization
and tracking errors to the origin. Then, an output-feedback con-
troller [26] was designed using the same backstepping idea as
in [25]. However, the designs in [25,26] are quite complicated,
computationally demanding, and are heavily dependent on par-
ticular ship dynamics with linear hydrodynamic damping, which
makes those approaches less practical. It is noted that while there
are many approaches to design controllers for different kinds
of planar underactuated vehicles, they are heavily dependent on
the particular structures of the vehicles. In the authors’ previous
work [3], a trajectory tracking control framework was proposed
for the generic planar underactuated vehicles that can be applied
to various forms of planar vehicles.

For multi-agent systems, the problem of formation stabilization
and tracking is a natural extension of the classical simultaneous
stabilization and tracking problem. Using a distributed estimation
strategy, the problem was solved in [27] for nonholonomic mobile
robot networks in the sense of GUUB. In [15], a uδ-PE formation
stabilization and tracking controller was proposed for mobile
robot networks using cascade system theory and Lyapunov’s di-
rect method (see also [28]). Based on generalized canonical trans-
formations, a passivity-based formation stabilization and tracking
2

controller was proposed for mobile robots in [29]. In practical
applications, the vehicles in the network may be of different
types. Even the same type of vehicles may have different dy-
namics and parameters due to the various sizes and loads. Thus,
it is more practical if a group of planar vehicles can cooperate
with each other regardless of the parameters or even structures
of their dynamic models. To the best of authors’ knowledge, for-
mation stabilization and tracking control for heterogeneous planar
underactuated vehicle networks is still an open problem.

1.3. Contributions of this paper

In this paper, we develop a new leader–follower formation
control framework for a class of heterogeneous planar underac-
tuated vehicle networks. Specifically,

(1) We solve the simultaneous formation stabilization and track-
ing problem for planar underactuated vehicle systems us-
ing a single smooth time-varying control architecture. The
control design is developed based on uδ-PE, and guarantees
UGAS for the origin of the closed-loop system.

(2) We do not assume any particular structure of the internal
dynamics of each vehicle but rather use a generic Euler–
Lagrangian (EL) model, and the vehicles are allowed to
have identical or non-identical dynamics. In other words,
the formation is designed for heterogeneous planar un-
deractuated vehicle networks, which includes vehicles of
different dynamic nature with different numbers of states
(e.g., ground vehicles and surface vessels).

(3) The proposed control law requires only neighbor-to-neigh-
bor information exchange, and does not require any global
position measurements of the followers. Furthermore, the
structure of the controller is relatively simple compared to
the existing controllers in the literature.

Compared with existing results in the literature and in con-
trast to existing controllers in [15,27,28], which are applicable
only to mobile robots, the approach proposed in this article can
be applied to networks of heterogeneous vehicles that include
not only vehicles with different parameters, but also vehicles
of distinct dynamic nature where even a number of dynamic
states for vehicles can differ. In contrast to our previous formation
controller in [29], the approach proposed in this article requires
only neighbor-to-neighbor information exchange, and does not
require any global position measurements of the followers.

1.4. Outline

The rest of paper is organized as follows. Preliminaries and
problem formulation are given in Section 2. Section 3 presents the
main results, which are the leader–follower formation stabiliza-
tion and tracking design and the stability analysis. Applications
and numerical simulations are presented in Section 4. Finally, the
concluding remarks are provided in Section 5.

2. Preliminaries and problem formulation

2.1. Notations

Let Rn represent the n-dimensional Euclidean space; R≥0 the
set of all non-negative real numbers; |·| the Euclidean norm of
vectors in Rn. For any constant ρ > 0, we use the notations
Bρ := {x ∈ Rn

: |x| < ρ} and B̄ρ := {x ∈ Rn
: |x| ≤ ρ} to denote

open and closed ball of radius ρ, respectively. For a full-rank
matrix G ∈ Rn×m with n > m, we denote the generalized inverse
as G†

:= [G⊤G]
−1G⊤, and define sym(G) :=

1
2 (G+G⊤). Throughout

this paper, we omit the arguments of functions when they are
clear from the context. For multi-agent systems considered in this
paper, we use the bold and non-italicized subscript i to denote the
index of an agent.
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Fig. 1. Top view of the leader–follower formation of heterogeneous planar
underactuated vehicles i and j, where the leader is an underactuated ship and
he follower is a nonholonomic mobile robot.

.2. Model of planar underactuated vehicles

Without loss of generality, a planar underactuated vehicle
an be modeled as a 3-DOF planar rigid body with only two
ndependent control inputs. The motion of a single vehicle i in
he network is described by assigning a body-fixed reference
rame {xbiybi} to its center of mass located at (xi, yi) and its ori-
ntation angle θi with respect to a fixed inertial reference frame
XY }, as shown in Fig. 1. The mathematical model of the planar
nderactuated vehicle i can be written in the EL form [3,30]

˙ i = J(qi)vi, (1a)

iv̇i + Ci(vi)vi + Di(vi)vi = Giτi, (1b)

here qi = [xi, yi, θi]⊤ is the configuration of the ith vehicle;
i = [vxi, vyi, ωi]

⊤ is the generalized velocity vector consisting of
he velocity of the center of mass (vxi, vyi) in the body-fixed frame
xbiybi} and its angular velocity ωi; τi = [τ1i, τ2i]

⊤ is the control
nput vector; J(qi) is the orthogonal kinematic transformation
atrix given by

(qi) =

[cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

]
; (2)

i is the inertia matrix; Ci(vi) is the Coriolis and centrifugal
atrix; Di(vi) is the damping matrix; and Gi is the input matrix.
ll matrices above are assumed to be in appropriate dimensions.
hree well-known properties associated with the EL system (1a),
1b) are as follows.

roperty 1 ([31]). For a single rigid body, the inertia matrix Mi
s constant, symmetric and positive definite, and the Coriolis and
entrifugal matrix Ci(vi) is skew-symmetric.

roperty 2 ([31]). The damping matrix Di(vi) is symmetric and
ositive semi-definite.

roperty 3 ([30]). For the system (1a), (1b), the differential
quation

iṡi + Ci(vi)si + Di(vi)si = Giτi (3)

efines an input–output mapping τi ↦→ yi := G⊤

i si, which is passive
ith the storage function EK :=

1
2 s

⊤

i Misi. Furthermore, if Di(·) is
ositive definite, then the mapping τ ↦→ y is output strictly passive.
i i m

3

Without loss generality, we make the following assumption.

ssumption 1. (i.) For each vehicle i, assume that the iner-
ia matrix Mi is diagonal, i.e., Mi = diag(m11,i,m22,i,m33,i).
(ii.) Assume that the surge force and the yaw torque are two
independent control inputs. That is, the input matrix Gi may be
written as1

Gi =

[1 0
0 0
0 1

]
, (4)

which implies that the underactuation is in the sway direction,
i.e., vyi-equation. (iii.) Assume that for each vehicle, the damping
force in the sway direction satisfies [Di(vi)](2,2) > 0 for all vyi ̸= 0,
and vyi/[Di(vi)](2,2) → 0 as vyi → 0, where [Di(vi)](2,2) denotes
the (2, 2)-element of Di(vi).

Remark 1. The EL system (1a), (1b) with Assumption 1 can
model a wide class of planar underactuated vehicles in practical
applications such as nonholonomic mobile robots [1,32], underac-
tuated ships [2,3], underwater vehicles [26], etc. The assumption
of damping force for the sway velocity is a mild one and has been
adopted in the literature on the topic of underactuated ships [14].
Note that this assumption is automatically satisfied in case of a
linear damping model.

2.3. Graph theory

For formation control of planar underactuated vehicle net-
works, we use graph theory to define the communication inter-
action among the vehicles. Consider a network of N + 1 hetero-
geneous planar underactuated vehicles, where the vehicles are
numbered i = 0, 1, . . . ,N with 0 representing the real group
leader and 1, . . . ,N the follower agents. The network topology
of the vehicles is defined by a directed graph G = (V, E) where
V = {0, 1, . . . ,N} and E ⊆ V × V represent its sets of vertices
and edges, respectively. The set of neighboring nodes with edges
connected to node i is denoted by Ni = {j ∈ V : (i, j) ∈ E}.
The edges represent communication between the nodes such that
(follower) node i obtains information from (leader) node j for
feedback control purposes, if j ∈ Ni, as shown in Fig. 1. The
constant weighted adjacency matrix A = [aij] associated with
G is defined in accordance with the rule that aij > 0 in the case
that j ∈ Ni and aij = 0 otherwise. The physical meaning of the
weighting coefficients aij > 0 represents the different levels of
importance of the agent neighbors’ information states. For the
group leader, we have a0j ≡ 0 for all j ∈ V , which implies that the
leader 0 has no neighbors in the network. We also assume that
aii = 0 for all i ∈ V . The communication graph G is assumed to
contain a directed spanning tree [33], which implies that there
exists at least one directed path consisting of communication
edges from the group leader 0 to each agent in the network. That
is the information from the leader passes down to an agent in
the network which, in turn, sends its own information to the
neighboring agents and so on. For more details on algebraic graph
theory, see [10,33].

1 Gi may be obtained in form (4) via a pre-input transformation. For instance,
he actual control inputs for a mobile robot are torques τLi and τRi applied to
ach wheel, as shown in Fig. 1. However, one can easily obtain the input matrix
f the form (4) via a linear transformation of the actual inputs. See [32] for
ore details.
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.4. Problem formulation

We assume that the reference trajectory of the group leader is
easible and is generated by the following virtual vehicle

˙d = J(qd)vd, (5)

where qd = [xd, yd, θd]⊤ denotes the position and orientation of
the virtual vehicle, and vd = [vxd, vyd, ωd]

⊤ denotes the linear and
ngular velocities of the virtual vehicle. We make the following
ssumption on the reference trajectory of the group leader.

ssumption 2. The reference trajectory (qd(t), vd(t)) is only
available to the group leader 0. Furthermore, the reference veloc-
ity vd(·) is continuously differentiable and bounded with bounded
first derivative. Moreover, one of the following conditions holds.

(A1) There exist T and µ1 > 0 such that∫ t+T

t
ωd(τ )2dτ ≥ µ1, ∀t ≥ 0. (6)

(A2) There exist µ2 > 0 such that∫
∞

0
|ωd(τ )|dτ ≤ µ2. (7)

The objective of formation stabilization and tracking is to design
a distributed controller for each agent such that it coordinates its
motion relative to one or more of its neighbors, and the network
asymptotically converges to a predefined geometric pattern un-
der Assumption 2. The geometric pattern of vehicle network in
terms of planar configuration is defined by a set of constant offset
vectors {dij := (dxij, d

y
ij, d

θ
ij) ∈ R3

: i, j ∈ V, i ̸= j}. To be more spe-
cific, under Assumption 2, we will design a controller (τ1i, τ2i) for
each agent without global position measurements such that: (i.)
all states in the closed-loop system are uniformly bounded; (ii.)
all the vehicles in the network maintain a prescribed formation
in the sense that for all i ∈ V

lim
t→∞

∑
j∈Ni

⏐⏐qi(t) − qj(t) − dij
⏐⏐ = 0. (8)

In this paper, we choose constant offset vectors (dxij, d
y
ij, d

θ
ij) for

simplicity of exposition and the results can be extended to ad-
dress time-varying formation geometry.

Remark 2. In Assumption 2, A1 implies that ωd(·) is persistently
exciting (PE), and A2 implies that ωd(·) belong to L1-space, which
implies that the reference angular velocity converge to zero suf-
ficiently fast. Hence, formation tracking of trajectories such as a
circle or a sinusoid function is included in A1, while formation
stabilization or formation tracking of a straight line is included
in A2. Note that the formation stabilization and tracking problem
covers two important cases:

Case 1 (Formation Stabilization): If vxd(t) = 0, vyd(t) = 0, and
ωd(t) = 0 for all t ≥ 0, then the formation stabilization and
tracking problem is reduced to the formation stabilization
problem.

Case 2 (Formation Tracking): If limt→∞[v2
xd(t)+ω2

d(t)] ̸= 0, then
the formation stabilization and tracking problem is reduced
to the formation tracking control problem.

2.5. Technical lemmas

In this subsection, we review and develop some results needed

for the main results of the paper.

4

2.5.1. Partial stability conditions for UGAS of interconnected systems
For basic definitions and the use of partial stability in the anal-

ysis of interconnected systems, the readers are referred to [34,35].
Consider the following time-varying interconnected system

Σ1 : ẋ1 = f1(t, x1, x2), x1(t0) = x10, t0 ≥ 0, (9)

Σ2 : ẋ2 = f2(t, x1, x2), x2(t0) = x20, (10)

where x = (x1, x2) ∈ Rn1 × Rn2 . We assume that the functions f1,
f2 are continuous in their arguments, locally Lipschitz in (x1, x2),
uniformly in t , and the origin (x1, x2) = (0, 0) is an equilibrium
point. For nonlinear time-varying system (9), (10) with partial
stability, we give sufficient conditions to guarantee the UGAS of
origin.

Theorem 1. Suppose that f2 is continuously differentiable. Then, the
origin of the interconnected system (9), (10) is UGAS if the following
conditions hold.

(1) (Partial stability with respect to x1) There exist a continuously
differentiable function V1 : R × Rn1 × Rn2 → R≥0, functions
α1, α2 ∈ K∞, and a positive definite function W1 : Rn1 → R
such that

α1 (|x1|) ≤ V1 (t, x1, x2) ≤ α2 (|x1|) , (11)

V̇1 (t, x1, x2) ≤ −W1 (x1) , (12)

for all (t, x1, x2) ∈ R × Rn1 × Rn2 .
(2) (0-UGAS of Σ2) There exist a continuously differentiable func-

tion V2 : R × Rn2 → R≥0, functions α3, α4 ∈ K∞, function
α5 ∈ K, and a positive definite function W2 : Rn2 → R such
that

α3 (|x2|) ≤ V2 (t, x2) ≤ α4 (|x2|) , (13)
∂V2

∂t
+

∂V2

∂x2
f2 (t, 0, x2) ≤ −W2 (x2) , (14)⏐⏐⏐⏐∂V2

∂x2

⏐⏐⏐⏐ ≤ α5(|x2|), (15)

for all (t, x2) ∈ R × Rn2 .
(3) (|x1| is small order of W1) The function W1 satisfies

lim
|x1|→∞

|x1|
W1(x1)

= 0. (16)

Proof. Along the trajectories of (9), (10), we have

V̇2 ≤ −W2 (x2) +

[
∂V2

∂x2
f2 (t, x1, x2) −

∂V2

∂x2
f2 (t, 0, x2)

]
≤ −W2 (x2) +

⏐⏐⏐⏐∂V2

∂x2

⏐⏐⏐⏐ ⏐⏐⏐⏐ ∂ f2
∂x1

⏐⏐⏐⏐ |x1|.
Since V2 is continuously differentiable and f2 is continuous and
Lipshitz, it follows that for each r > 0 there exist c1 > 0
and c2 > 0 such that |∂V2/∂x2| ≤ c1 and |∂ f2/∂x1| ≤ c2 for
all t ≥ 0 and for all (x1, x2) ∈ B̄r . Then, consider a Lyapunov
candidate V = κV1 + V2, where κ is a positive constant. Along
the trajectories of (9), (10), we have

V̇ (t, x1, x2) ≤ −κW1(x1)
[
1 −

c1c2
κW1(x1)

|x1|
]

− W2(x2). (17)

It follows from (16), (17) that the system (9), (10) is uniformly
globally bounded (UGB) by choosing κ sufficiently large. It follows
from [35, Theorem 3.1] that the origin of system (9), (10) is
uniformly asymptotically stable. Thus, there exists δ > 0 such
that |x(t0)| < δ ⇒ |x(t, t0, x(t0))| → 0 as t → ∞. The uniform
global attractivity follows from the fact that κ can be chosen
arbitrarily large such that the trajectory of (9), (10) with initial
conditions starting in B̄r enters the domain of attraction Bδ for
ny r > 0. □
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.5.2. Matrosov’s theorem
Our main result also relies on Matrosov’s theorem concerning

he differential equation ẋ = f (t, x) with an equilibrium point at
the origin.

Definition 1 (Non-zero Definiteness [36]). A continuous function
w : R≥0 × B̄ρ → R is said to be non-zero definite on the set M ⊂

B̄ρ if for any pair of numbers δ and R such that 0 < δ < R ≤ ρ
there exist positive numbers ∆ and µ such that

|x| ∈ [δ, R]
|x|M < ∆

t ≥ 0

⎫⎬⎭ H⇒ |w(t, x)| > µ, (18)

here |x|M := infz∈M |x − z|.

heorem 2 (Matrosov’s Theorem [36]). Suppose that there exist a
ontinuous function V ⋆

: Rn
→ R≥0, continuously differentiable

unctions V : R≥0 × Rn
→ R and W : R≥0 × Rn

→ R, functions
1, α2 ∈ K∞, and for each R > 0, there exists L > 0 such that

(a) W and f satisfy

max {|W (t, x)|, |f (t, x)|} ≤ L, ∀(t, x) ∈ R≥0 × B̄R; (19)

(b) V is positive definite decrescent and V̇ is negative semi-
definite, i.e., for all (t, x) ∈ R≥0 × Rn

α1(|x|) ≤ V (t, x) ≤ α2(|x|), (20)

V̇ (t, x) ≤ −V ⋆(x) ≤ 0; (21)

(c) the function Ẇ (t, x) is non-zero definite on

M :=
{
x ∈ B̄R : V ⋆(x) = 0

}
. (22)

Then, the origin of ẋ = f (t, x) is UGAS.

The proof of Theorem 2 is provided in [36].

3. Leader–follower formation control

3.1. Feasible reference trajectory generation

Due to the nonholonomic constraints of underactuated vehi-
cles, the geometric pattern dictated by the formation {dij ∈ R3

:

i, j ∈ V} cannot be assigned arbitrarily. More precisely, for each
vehicle i, given the desired position offset vectors (dxij, d

y
ij) for all

j ∈ Ni, the feasible orientation offset dθ
ij must be determined

based on the same nonholonomic constraints. For illustration, let
us denote the position reference trajectory for the vessel i by

x̄i(t) :=
1∑

j∈Ni
aij

∑
j∈Ni

aij
[
xj(t) + dxij

]
, (23)

¯ i(t) :=
1∑

j∈Ni
aij

∑
j∈Ni

aij
[
yj(t) + dyij

]
. (24)

Then, the feasible orientation trajectory θ̄i(t) is forced to obey
the same second-order nonholonomic constraint as the vehicle
i. That is, θ̄i(t) is the solution of the underactuated equation in
(1b) (i.e., the vyi-equation)

˙̄vyi(t) = fyi
(
v̄xi(t), v̄yi(t), ˙̄θi(t)

)
, (25)

subjected to the initial condition θ̄i(0) = θ̄i,0 [3], where fyi is the
right hand side of the second equation in

˙̄vi = −M−1
i Ci(v̄i)v̄i − M−1

i Di(v̄i)v̄i + M−1
i Giτi. (26)

Let us denote q̄i(t) := [x̄i(t), ȳi(t), θ̄i(t)]⊤, and v̄i(t) := [v̄xi(t),
v̄ (t), ˙̄θ (t)]⊤. Note that components v̄ and v̄ can be expressed
yi i xi yi

5

in terms of θ̄i and ˙̄θi using Eq. (1a). As a result, (25) is a first-
order nonlinear ordinary differential equation with respect to θ̄i.
We integrate this equation numerically in real time to obtain the
feasible orientation trajectory θ̄i(t) as a function of time. Finally,
the feasible orientation offset dθ

ij is selected as dθ
ij = θ̄i(t) − θj(t).

Remark 3. It is noted that we only use the time derivative of
(23), (24) in the feasible reference trajectory generation, and the
global position measurements (xj(t), yj(t)) are not required. Also,
we will use the signal qi(t)− q̄i(t) for feedback purpose, and only
the relative configuration measurements qi(t)−qj(t) are required.
See an example of reference trajectory generation for underac-
tuated surface vessels in [37]. In the case of formation control
for homogeneous vehicle networks, dθ

ij can be chosen simply as 0.
Note, however, that in order to guarantee a formation relative to
global coordinates, the group leader 0 needs to know its global
positioning while the rest of the network does not need to.

3.2. Formation control design

For the set-point stabilization problem of fully-actuated EL
systems without kinematics equations

Miq̈i + Ci(q̇i)q̇i + Di(q̇i)q̇i = τi, (27)

a fundamental result is achieving global asymptotic stabilization
via energy shaping plus damping injection, where the controller
always has a simple proportional–derivative (PD) form [30], i.e.,

τi = −kpi(qi − q̄i) − kdiq̇i, (28)

where kpi, kdi are positive control gains. For the tracking control
problem of fully-actuated EL systems (27), the PD+ controller
originally introduced in [38] is a natural extension of the PD
control law (28) and is given by

τi = M ¨̄qi + C(q̇i) ˙̄qi + D(q̇i) ˙̄qi − kpi(qi − q̄i) − kdi(q̇i − ˙̄qi). (29)

The PD+ controller was proved in [38] to achieve global asymp-
totic tracking using Matrosov’s theorem. It is noted that the
PD+ controller (29) reduces to the PD controller (28) when the
reference velocity tends to zero. We will use a similar passivity-
based technique in the simultaneous formation stabilization and
tracking control design.

For the leader–follower tracking problem, we usually consider
the problem for the follower i as tracking a reference leader
similar to [1,3,15,28,29,37]. The basic idea is to calculate the
dynamics of the tracking error (qi− q̄i, vi− v̄i), and try to stabilize
this error system. However, the error system often becomes very
complex. Thus, instead of using v̄i, we define the new reference
velocity in the body-fixed frame {xbiybi} as v̂i := J(qi)⊤ ˙̄qi. Corre-
spondingly, for agent i, the error vectors in the body-fixed frame
{xbiybi} are defined as q̃bi = [x̃bi , ỹ

b
i , θ̃i]

⊤
:= J(qi)⊤(qi − q̄i), and

ṽi = [ṽxi, ṽyi, ω̃i]
⊤

:= (vi − v̂i). Clearly, since J(qi) is invertible,
stabilization of (q̃bi , ṽi) implies that qi(t) → q̄i(t) and q̇i(t) → ˙̄qi(t)
as t → ∞ which solves formation control problem (8). Let us
consider the following modified PD+ controller

τi = G†
i

[
M ˙̂vi + C(vi)v̂i + D(vi)v̂i − Kpiq̃bi − Kdiṽi + ui

]
, (30)

where Kpi > 0 and Kdi > 0 are constant, diagonal control gain
matrices; ui is a new control input which will be designed later.
We have the following result.

Proposition 1. Consider the planar underactuated vehicle (1a),
(1b) satisfying Assumption 1. Then, under the modified PD+ control
law (30)with ui ≡ 0, the origin for the (x̃bi , θ̃i, ṽxi, ṽyi, ω̃i)-subsystem
is UGAS, and the solutions of the closed-loop system are UGB.
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roof. Consider the function

i(q̃i, ṽi) =
1
2

[
ṽ⊤

i

(
GiG

†
i

)
Miṽi + (q̃bi )

⊤

(
GiG

†
i

)
Kpiq̃bi

]
,

hich is positive definite with respect to the error vector (x̃bi , θ̃i,
˜xi, ω̃i). Taking time derivative along the trajectories of the closed-
oop system, we have

˙i =ṽ⊤

i

(
GiG

†
i

)
Mi ˙̃vi + ( ˙̃qbi )

⊤

(
GiG

†
i

)
Kpiq̃bi

=ṽ⊤

i

(
GiG

†
i

) [
Giτi − Ci(vi)vi − Di(vi)vi − Mi ˙̂vi

]
+ ( ˙̃qbi )

⊤

(
GiG

†
i

)
Kpiq̃bi

=ṽ⊤

i

(
GiG

†
i

) [
C(vi)v̂i + D(vi)v̂i − Kpiq̃bi − Kdiṽi + ui

− Ci(vi)vi − Di(vi)vi] + ( ˙̃qbi )
⊤

(
GiG

†
i

)
Kpiq̃bi

= − ṽ⊤

i sym
{(

GiG
†
i

)
[Di(vi) + Kdi]

}
ṽi + ṽ⊤

i

(
GiG

†
i

)
ui

≤

[(
GiG

†
i

)
ṽi

]⊤

ui, (31)

here the third equality is due to the fact that GiG
†
i is idem-

otent, the fourth one is due to Property 1, and the last in-
quality is due to Property 2 and Kdi > 0. It is clear that
he input–output mapping ui ↦→ (GiG

†
i )ṽi is passive. Conse-

uently, if ui ≡ 0, we have (GiG
†
i )ṽi ∈ L2, and the origin

or the (x̃bi , θ̃i, ṽxi, ω̃i)-subsystem is UGS. It also follows from
aSalle–Yoshizawa theorem that (ṽxi, ω̃i) → 0 as t → ∞. If
e consider ṽyi(t) as a time-varying signal, then the origin of
he (ṽxi, ω̃i)-subsystem is uniformly globally exponentially stable.
hen, the (ṽxi, ṽyi, ω̃i)-subsystem is globally exponential stable
ith respect to (ṽxi, ω̃i) uniformly in ṽyi(0) (i.e., partial stability
ith respect to (ṽxi, ω̃i)). It also follows from Assumption 1 item
iii.) that the origin of ṽyi-dynamics is UGAS when (ṽxi, ω̃i) ≡

0, 0) (i.e., 0-UGAS of ṽyi-subsystem). Therefore, we conclude
hat the (ṽxi, ṽyi, ω̃i)-subsystem is UGAS according to Theorem 1.
oreover, the condition vyi/[Di(vi)](2,2) → 0 as vyi → 0 implies

hat ṽyi ∈ L1 and ỹbi ∈ L∞. Thus, we conclude that the solutions
f the closed-loop system are UGB.
Next, consider the auxiliary function Wi = (q̃bi )

⊤(GiG
†
i )Miṽi for

he (x̃bi , θ̃i, ṽxi, ω̃i)-subsystem. Taking time derivative of Wi along
rajectories of the closed-loop system, we have

Ẇi = ( ˙̃qbi )
⊤(GiG

†
i )Miṽi + (q̃bi )

⊤(GiG
†
i )Mi ˙̃vi.

hen, evaluating Ẇ on the set M := {ṽi = 0} yields

˙ i|M= − (q̃bi )
⊤sym

{(
GiG

†
i

)
[Ci(vi) + Di(vi) + Kdi]

}
ṽi

− (q̃bi )
⊤(GiG

†
i )Kpiq̃bi

= − (q̃bi )
⊤(GiG

†
i )Kpiq̃bi ≤ 0.

Thus, Ẇi is non-zero definite on the set M. It follows from
the Matrosov’s Theorem 2 that the origin for the (x̃bi , θ̃i, ṽxi, ω̃i)-
subsystem is UGAS. Therefore, we conclude that the origin of the
(x̃bi , θ̃i, ṽxi, ṽyi, ω̃i)-subsystem is UGAS by considering ỹbi (t) as a
bounded time-varying signal. □

Under the modified passivity-based PD+ controller (30) with
ui ≡ 0, the velocity error vector ṽi(t) → 0, and the position
error in the body-fixed frame (x̃bi (t), θ̃i(t)) → 0 as t → ∞.
However, due to the underactuation, the position error ỹbi (t) may
converge only to a constant which is not necessarily zero. Denote
the position error in the global frame by (x̃i, ỹi) := (xi− x̄i, yi− ȳi).
Although

x̃b(t) =
[
cos(θ ) sin(θ )

] [
x̃ (t) ỹ (t)

]⊤
→ 0 (32)
i i i i i
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does not imply that (x̃i(t), ỹi(t)) → 0 because of the rank defi-
ciency of [cos(θi), sin(θi)], a persistently exciting θi(t) will guar-
antee that the position error (x̃i(t), ỹi(t)) → 0 as t → ∞.

Proposition 2. Assume that the velocity error vector ṽi(t) ∈

L1 ∩ L∞, and that ωi(t) is persistently exciting (ωi ∈ PE), that is,
there exist constants Ti, µi > 0 such that∫ t+Ti

t
ωi(τ )2dτ ≥ µi, ∀t ≥ 0. (33)

Then, x̃bi (t) → 0 as t → ∞ implies that (x̃i(t), ỹi(t)) → 0 as
t → ∞.

Proof. Note that J(qi) is an orthogonal matrix, and ṽi(t) ∈ L1∩L∞

implies that (q̇i(t) − ˙̄qi(t)) ∈ L1 ∩ L∞. Also, ṽi(t) → 0 implies that
(q̇i(t)− ˙̄qi(t)) → 0 as t → ∞. Thus, by integrating both sides, we
conclude that (x̃i(t), ỹi(t)) → const. Now, consider the following
equation

c1 cos(θi) + c2 sin(θi) = 0, (34)

where c1, c2 are constants. If one of c1 and c2 is non-zero, then
Eq. (34) has only isolate solutions θi = const. On the other hand,
by the filter property of persistently exciting signals, ωi ∈ PE
implies that θi does not converge to a constant as t → ∞. Thus,
by contradiction and the continuity of (32), we conclude that the
position error (x̃i(t), ỹi(t)) → 0 as t → ∞. □

It follows from Propositions 1 and 2 that if the angular velocity
of the vehicle i is PE, then the modified PD+ controller (30) with
ui ≡ 0 can be used to solve the formation tracking problem.
However, in the cases of formation stabilization and formation
tracking of a straight line, the angular velocity of the vehicle i
converges to zero and thus the PE property is lost. In this case,
we will use ui as a ‘‘PE perturbation" on the angular motion to
prevent (x̃i(t), ỹi(t)) converging to a non-zero constant. The new
control input ui is defined as

ui =
[
0 0 αi(t, ỹbi )

]⊤
, (35)

where αi(t, ỹbi ) = kρiρi(t)ỹbi (t), kρi > 0 is a constant, and the
time-varying signal ρi(t) is PE, continuously differentiable, and
bounded with bounded first derivative. Note that the excitation
property of αi is reminiscent of uδ-PE with respect to ỹbi [39],
i.e., for each δ > 0 there exist T , µ > 0 such that⏐⏐ỹbi (t)⏐⏐ > δ ⇒

∫ t+T

t
αi(τ , ỹbi )

2dτ > µ, ∀t ≥ 0. (36)

The illustration of the modified PD+ controller (30) with uδ-PE
‘‘perturbation" (35) in closed loop is shown in Fig. 2. It is noted
that θi(t) and ωi(t) should be considered as time-varying signals
in the linear motion error dynamics, and for any (θi, ωi) ∈ L∞, the
linear motion error dynamics are globally asymptotically stable
with respect to (x̃bi , ṽxi, ṽyi) uniformly in ỹbi (0).

Proposition 3. Consider the planar underactuated vehicle (1a),
(1b) satisfying Assumption 1. Then, under the modified PD+ control
law (30) and (35), the origin for the (x̃bi , ỹ

b
i , θ̃i, ṽxi, ṽyi, ω̃i)-dynamics

is UGAS.

Proof. It follows from Proposition 1 that if αi(t, ỹbi ) ≡ 0, the
(x̃bi , θ̃i, ṽxi, ṽyi, ω̃i)-subsystem is UGAS to its origin. Furthermore,
due to the damping term Kdi in the PD+ control law (30), the
angular motion dynamics is input-to-state stable (ISS) by con-
sidering αi(t, ỹbi ) as an input, as shown in Fig. 2. It also follows
from the proof in Proposition 2 that ỹbi (t) converges to a constant

˜b
as t → ∞. Now, assume that yi (t) converges to a non-zero
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Fig. 2. Illustration of the modified PD+ controller (30) in closed loop with uδ-PE
‘perturbation" (35).

onstant. Then, (36) implies αi ∈ PE, and from the filter property
e have ωi(t) ∈ PE. Then, it follows from Proposition 2 that
x̃i(t), ỹi(t)) → 0 as t → ∞, which contradicts the assumption
that ỹbi (t) converges to a non-zero constant. Thus, we conclude
that ỹbi (t) → 0 as t → ∞ by contradiction. The UGAS of the
origin comes from the ISS property when αi(t, ỹbi ) → 0 as t → ∞,
hich completes the proof. □

Our main result comes from the previous rationale.

heorem 3. Consider a network of heterogeneous planar underac-
uated vehicles satisfying Assumptions 1 and 2. Then, the formation
s achieved under the modified PD+ control law (30) and (35) if the
irected communication graph G contains a spanning tree.

roof. By the assumption of the spanning tree topology in the
ommunication graph and using Proposition 3, an immediate
onsequence of the claim is that for each vehicle i in the group,
he origin for the (x̃bi , ỹ

b
i , θ̃i, ṽxi, ṽyi, ω̃i)-dynamics is UGAS. It fol-

ows from the converse Lyapunov theorem that there exist a
ontinuously differentiable function Vi : R×R6

→ R≥0, ϕ1i, ϕ2i ∈

K∞, and a positive definite function Wi such that

1i
(⏐⏐(q̃bi , ṽi)

⏐⏐) ≤ Vi
(
t, q̃bi , ṽi

)
≤ ϕ2i

(⏐⏐(q̃bi , ṽi)
⏐⏐) ,

V̇i ≤ −Wi
(
(q̃bi , ṽi)

)
.

Then, define the Lyapunov candidate

V :=

∑
i∈V

∑
j∈Ni

aijVi. (37)

Note that if the communication graph contains a spanning tree,
then the Lyapunov candidate V covers all the agents in the net-
work. Taking the time derivative along the trajectories of the
closed-loop system, we have that

V̇ ≤ −

∑
i∈V

∑
j∈Ni

aijWi
(
(q̃bi , ṽi)

)
. (38)

Thus, the formation error converges to zero as t → ∞, and we
conclude that the formation is achieved if the communication
graph contains a spanning tree. □

Remark 4. It is noted that, for each agent, the local motion infor-
mation (e.g., orientation angle, linear velocity, and angle velocity,
etc.) can be measured by its own onboard sensors (e.g., gyroscope,
speedometer, IMU, etc.), and then sent to its followers via the
communication network. The relative position information can
be directly measured by the onboard sensors of its followers
(e.g., Lidar, camera, etc.) in its own body-fixed frame, and then
can be converted to the error in the global coordinates (qi − qj)
by multiply the orthogonal transformation matrix J(θi) given in
(2).
7

4. Applications and simulation results

In this section we present specific forms of the general EL
model (1a), (1b) for various vehicles, and present numerical sim-
ulations to illustrate the effectiveness of the proposed formation
control law. Vehicles chosen are underactuated surface vessels
and ground mobile robots. The above combination of the vehicles
can be used in robotic manipulators installed on boards of surface
vessels and ground vehicles for coordinated load carrying in
canals, for surveillance operations where coordination between
the units on bodies of water (particularly rivers) and on the
ground is needed, and for military operations to increase the
striking force from multiple sources in the sea and on the ground,
to name a few examples.

4.1. Applications

Underactuated Surface Vessels. The EL equations for an un-
deractuated surface vessel model with nonlinear hydrodynamic
damping are given by (1a), (1b) with

M =

[m11 0 0
0 m22 0
0 0 m33

]
, C(v) =

[ 0 0 −m22vy
0 0 m11vx

m22vy −m11vx 0

]
,

D(v) =

[d11|vx|
α11 0 0

0 d22|vy|
α22 0

0 0 d33|ω|
α33

]
,G =

[1 0
0 0
0 1

]
,

where mii > 0; dii > 0 and 0 ≤ αii < 1 for i = 1, 2, 3 [3,14].
This model is also applicable to linear hydrodynamic damping
with αii = 0, which is the model used in [2,24–26]. Note that
the conditions in Assumption 1 can be verified directly and are
satisfied for this model.

Wheeled Mobile Robots. Due to the nonholonomic constraints,
the dimensions of the tangent (velocity) space is reduced. The EL
equations for a nonholonomic mobile robot model are given by
(1a), (1b) with

M =

[
m̃ 0
0 Ĩ

]
, C(v) =

[
0 −mdω

mdω 0

]
,D(v) = 0,G =

[
1
r 0
0 a

r

]
,

where m̃ = m+2J/r2, Ĩ = I+md2+a2J/r2, and m, d, I, J, a, r > 0
are constants [13,15,16]. Although there is no vy-dynamics in the
model and the damping matrix D(v) is zero, the nonholonomic
constraint vy = dω suggests that the damping term introduced
by the control law Kdi makes the dynamic equations output
strictly passive. Thus, the modified PD+ control law (30), (35)
can be applied to this model directly, and the UGAS for the vy-
subsystem comes directly from the linear relationship between
the ω-dynamics and the vy-dynamics.

4.2. Numerical simulations

Let us consider a group of six planar underactuated vehicles
with the indices 0 − 5. Agent 0 is the leader and agents 1 − 5
are the followers with the communication topology graph and
the weighted adjacency matrix as shown in Fig. 3. Note that we
assume that the communication from agent 0 to agent 5, and the
communication from agent 2 to agent 4 are twice as important
as the other communication links. We assume that agents 0, 1
are surface vessels with linear hydrodynamic damping whose
parameters are given as

m11,i = 1.412, m22,i = 1.982, m33,i = 0.354,

d11,i = 3.436, d22,i = 12.99, d33,i = 0.864;
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Fig. 3. Directed communication topology and the weighted adjacency matrix
used in the simulations.

Fig. 4. Time history of the RMS errors of the formation stabilization.

agents 2, 3 are surface vessels with nonlinear hydrodynamic
damping whose parameters are given as

m11,i = 1.317, m22,i = 3.832, m33,i = 0.926,
d11,i = 5.252, d22,i = 14.14, d33,i = 2.262,
α11,i = 0.510, α22,i = 0.747, α33,i = 1.592;

gents 4, 5 are nonholonomic mobile robots whose parameters
re given as

mi = 3.0, Ii = 0.025, Ji = 6 × 10−6,

ai = 0.33, di = 0.08, ri = 0.05.

ll the parameters are given in SI units. The desired geometric
attern in formation is assumed to be a regular hexagon with
he side length h = 2, i.e., (dx10, d

y
10) = (−1, −

√
3), (dx21, d

y
21) =

(1, −
√
3), (dx32, d

y
32) = (0, 2), (dx43, d

y
43) = (1,

√
3), (dx54, d

y
54) =

(−1,
√
3). The vehicles are assumed to be initially stationary at

the coordinates
q0(0) = (0, 0, 0), q1(0) = (−5, −5, 0), q2(0) = (−2, −6, 1),
q3(0) = (3, −5, 1), q4(0) = (5, −5, 1), q5(0) = (5, 2, 0).

Formation Stabilization. In the first simulation, we assume that
he desired configuration for the group leader 0 is at the origin
for all times t ≥ 0. The control parameters are selected as Kpi =

iag{5, 5, 5}, Kdi = diag{4, 4, 4}, kρi = 2 and ρi(t) = sin(2t) for
all i ∈ V .

The simulation results are shown in Figs. 4–5, where the
root mean square (RMS) error shown in Fig. 4 is of the form
RMS([·]i) = ( 1n

∑n
i=1 [·]

2
i )

1/2. It can be seen from the figures that
he formation errors approach zero after 40 s. As shown in Figs. 4–
, firstly, each vehicle converges to a small neighborhood of the
8

Fig. 5. Position paths in the {XY } frame of the formation stabilization.

desired formation position very fast. Then, it converges to the
desired formation position with oscillation, and this convergence
phase is slow. This oscillation is due to the uδ-PE term αi in-
troduced in the control law, and it is a common phenomenon
in stabilization of nonholonomic and underactuated systems via
smooth time-varying feedbacks.

Formation Tracking. In the second simulation, we assume that
the desired path for the group leader 0 is a U-shape function, i.e.,

(xd(t), yd(t)) =

⎧⎨⎩ (0.5t, 0), 0 ≤ t < 40,
(20 + 5 sin( π t

20 ), 5 − 5 cos( π t
20 )), 40 ≤ t < 60,

(20 − 0.5(t − 60), 10), 60 ≤ t.

The control parameters are selected as Kpi = diag{8, 8, 8}, Kdi =

diag{4, 4, 4}, kρi = 4 and ρi(t) = sin(4t) for all i ∈ V .
The simulation results are shown in Figs. 6–7. It can be seen

from the figures that all formation tracking errors approach zero
with satisfactory performance. It is noted that the proposed con-
trol law is essentially a PD-type controller. Thus, it is reasonable
to expect a better performance and robustness with high control
gains. Based on the above simulations, the effectiveness of the
proposed formation control scheme is verified.

5. Concluding remarks

In this work, we presented a distributed control framework
to simultaneously address the formation stabilization and tracking
control problem for heterogeneous planar underactuated vehicle
networks without global position measurements. The vehicles in
the network are modeled as generic EL systems and are allowed
to have identical or non-identical dynamics. The control design is
developed based on partial stability theory, Matrosov’s theorem,
and uδ-PE, and guarantees UGAS for the origin of the closed-loop
system. The proposed controller has a PD+ form and is relatively
simple compared to existing controllers in the literature that, in
addition, solve the stabilization and tracking problems separately.
Thus, it is practical and easy to implement. Further research is
being carried out to extend the proposed method to cooperative
control of three-dimensional vehicles such as quadcopters. We
also plan to extend this work to address dynamic communication
topology and communication delays, which are significant and

prevalent in multi-agent networks.
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Fig. 6. Time history of the RMS errors of the formation tracking.

Fig. 7. Position paths in the {XY } frame of the formation tracking.
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