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Abstract—Cells can be regarded as a complex network, which 
contains thousands of criss-cross signal pathways. The mechanical 
properties of a cell reflect the structure and composition of its 
cytoskeleton and are closely related to the cellular biological 
functions and physiological activities. In this study, we develop a 
dynamical model with cellular viscoelasticity properties as the 
system parameters to describe the stress-relaxation phenomenon 
of a single cell under the indentation of atomic force microscope 
(AFM). The system order and parameters were identified and 
analyzed. The parameters identified with this model represent the 
cellular mechanical elasticity and viscosity respectively and can be 
used to classify cell types and discriminate cellular state. 
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I.  INTRODUCTION  

Cells are the basic component units of organisms and contain 
the important and abundant biological information. The 
complete genetic information of humans can be obtained from a 
single cell [1]. On the other hand, a cell is a complex network, 
which contains thousands of criss-cross signal pathways. 
Traditional Method to describe this dynamics of the network is 
extremely complicated. Zhang et al. describe the local dynamic 
behaviors of a cellular signal network by using 23 equations and 
82 parameters [2]. Otte et al. use a 118-equations-model with 
177 parameters to describe the dynamics of ion channels [3]. 
Moreover, it is difficult to measure the variation of the chemical 
components on the pathways of the network on a living cell. 
Therefore, it is hard to analyze the global properties of cells via 
the underlying mechanism, let alone how to control. 

Mechanical properties of a cell are closely related to a cell’s 
life activities such as cell growth, cell division, cell movement 
and cell adhesion, and reflect the structure and composition of 
cytoskeleton. Recently, some researches show that the variation 
of mechanical properties of cells is associated with the 
emergence and development of human disease. Many diseases, 
taking cancer as an example, can drastically affect cell’s 
mechanical properties at cellular level [4]. The development of 
nanotechnologies, including atomic force microscope (AFM) 
[5], magnetic and optical tweezers [6], and so on, enables the 
measurement of mechanical properties on single living cells. So 
the cellular mechanical information can be utilized as a label-
free biomarker for cell recognition [7], early diagnosis of disease 
and drug efficacy evaluation [8], and the study on the 

mechanical properties of single cells may provide a potential 
method for detecting abnormal cells, early diagnosis of serious 
disease and drug screening. Therefore, it is important to measure 
and quantitatively describe the mechanical properties of a single 
cell using a mathematical model. 

In order to acquire the mechanical properties with the AFM 
technology, kinds of theories and models are used to calculate 
the mechanical performance indexes, commonly Young’s 
modulus. In the indentation process, the tip of a AFM probe will 
detect the specimen and will measure the relationship between 
the force and the depth of indentation. Hertz model [9] is a 
widely used model to describe the mechanical properties of a 
single cell. Based on Hertz model, the theoretical relationship 
between the force and the depth of indentation depends on the 
probe shapes, including pyramid [10], cone [11] and sphere [12]. 
However, many issues of Hertz model still exist and need to be 
addressed. For example, Hertz model, with the assumption of 
linear elastic for cells, cannot explain the dynamic behavior 
commonly observed on living cells [13, 14]. A.H.W. Ngan et al. 
developed the so-called rate-jump approach to successfully 
evaluate the mechanical parameters of viscoelastic materials 
analytically [15]. The rate-jump method has been extensively 
and effectively used to estimate viscoelasticity of living cells [16, 
17]. And, considering the high complexity of the viscoelastic 
parameters evaluation, analytical solution is not yet accurate 
enough for the characterization of living cells’ mechanics. 
Recently, Wei et al. developed a rectification approach based on 
the finite element simulation with cells material assumed to be 
viscoelastic and acquired the viscoelastic parameters that reflect 
the actual dynamical mechanics of cells [18]. This finite element 
simulation-based approach can obtain the parameters of 
viscoelastic model accurately, but cannot obtain an analytical 
solution so that the characteristic of the system cannot be 
reflected roundly. 

In general, the more complicated a system, the harder to 
model by using mechanical approaches. Even though with the 
mechanical model, it is difficult to analysis the system because 
of the complexity due to the high order and nonlinearity. 
However, an input-output-based view will make the modeling 
and analysis convenient, and more properties of the system will 
be easy to obtain from the input-output view. In present work, 
we develop a modeling method based on viscoelastic model to 
describe the mechanical properties of a single cell. The order and 
parameters of the dynamic system are determined by system 
identification methods. We also use the principal component 
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analysis to reduce the dimension of parameter space, and then 
we use the principal components classify different kinds of cells. 
Furthermore, this work provides a method for detecting 
abnormal cells and early diagnosis of serious disease. 

II. METHOD 

In this section, the experiment process of how to obtain the 
input and output curves is to be given firstly. Then, the process 
of modelling the mechanical properties of a single cell are 
described, and we perform mechanical parameters extraction 
under the viscoelastic assumption.  

A. Indentation Process 

Main idea of the input-output-based modelling is to describe 
the system with appropriate external signals instead of interior 
structure of the system. We use the distance AFM tip pushing 
down as the system’s input, and the output is the force that AFM 
measures. Schematic of stress relaxation experiment is shown in 
Fig. 1. In stress relaxation experiment, probe, which is located 
just above cell, travels towards the cell at a speed of 4 μm/s, and 
then keeps still on the cell after the predefined peak force is 
reached.  

 
Fig. 1. Schematic diagram of using an AFM tip to push a single cell. 

 
Fig. 2. Illustration of the stress experiment and one whole F–t curve obtained.  

(a) shows the stress relaxation experiment curves (blue) and AFM probe 
press curve (red). (b) The stress relaxation  part and low-pass filter of the 
stress relaxation curve. 

Fig. 2 (a) shows the as obtained force-z position-time curve. 
It obviously includes three stages of indentation process, i.e., 
loading, stress relaxation and retracting, respectively. Before the 
loading stage, both the distance of AFM tip pushing down and 
the force are zero. During the loading stage, the distance of z 
position decrease with a constant speed and the force AFM 
measured increase rapidly, and in the stress relaxation part, the 
distance is staying and the force decrease slowly. In the 
retracting stage, the distance of z position increase with a 
constant speed and the force decrease rapidly. As shown in Fig. 
2 (b), the force-time curve of relaxation stage that AFM 
measures can be considered approximatively as the step 
response curve of the system. To avoid the measurement noise 
from AFM, a low-pass filter with 10 Hz cut-off frequency is 
used (red curve in Fig.2 (b)). 

B. Viscoelastic model of a single cell 

As we mentioned above, the distance that AFM tip push the 
cell down is system’s input u(ݐ), and the system’s output (ݐ)ݕ is 
the force on the cellular surface detected by AFM. The cellular 
mechanical properties can be modeled by Maxwell model for 
viscoelastic material in the indentation progress shown in Fig. 3 
[18]. A spring ݇଴ and n spring-damping paths are in parallel, and 
each path is constituted by a spring and a damping in cascade. 
Then we can write the state-space equation of Maxwell model 
in the following. 
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where ݔ௜ is the moving distance of the point between spring and 
damping in the ith path. The state-space equation (1) completely 
describe the mechanical properties of the cell under assumptions 
of Maxwell model for viscoelastic material. 

It can be seen from this model that the elasticity of cells can 
be represented by the parameters ݇௜ , and the viscosity can be 
represented by the parameters ܾ௜. It is worth pointing that the 
nonlinear of cellular elasticity and viscosity can be produced by 
different combinations of different parameters. Then, the order 
of the system n and the parameters will be determined by a 
system identification approach later. 

 
Fig. 3. An n-order equivalent mechanical models for viscoelastic material of a 

single cell. 

a. 

b. 



C. Order and Parameters Identification 

We have determined the structure of the system, and we are 
going to determine the order and parameters of systems by a 
system identification approach. System identification 
determines the mathematical model which describes the 
behavior of the system by using the input and output functions 
[19, 20, 21]. Here, we use a classic system identification 
approach named Hankel matrix method to determine the 
system’s order. Traditionally, one identifies from input-output 
data the Markov parameters from which the Hankel matrix is 
built. We have obtained the step response sequence as we 
mentioned above, and the impulse response sequence of the 
system can be obtained by calculating the difference of step 
response sequence. The impulse response sequence is denoted 
as ሼ݃ሺ݅ሻ|݅ ൌ 1, 2, … ,  ሽ. Construct Hankel matrix as followsܮ
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Where ݈ determines the dimension of Hankel matrix, and	݇ is 
any integer and ݇ ∈ ሾ1, ܮ െ 2݈ ൅ 2ሿ. If ݈ ൐ ݊଴ (the real order of 
the system), the rank of the Hankel matrix equals ݊଴, i.e. 
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Because of the impulse response sequence includes noises, so 
the average ratio of the determinant of Hankel matrix ܦ௟ is used 
to judge that the Hankel matrix is singular or not. Where  
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Let ݈  gradually increase from 1, and when ܦ௟  reaches a 
maximum, the ݈ can be considered as the order of the model. 
Once we obtain the order of dynamic system of a single cell, the 
parameters of state-space equations can be easily determined by 
least square method. The system identification toolbox of 
Matlab can easily use to determine the parameters by least 
square method. 

Up to now, we have introduced a method on how to obtain 
the structure and parameters of a single cell by the input-output 
response curves. These dynamic equations can describe the 
mechanical properties of a single cell completely in the 
viscoelastic assumptions. 

III. RESULTS 

In this section, an example and an application of the method 
mentioned above will be given. The experimental material we 
used are four different kinds of cells, namely MCF-7, Hek293, 
L929 and Neuro 2A. The system order is identified using the 
Hankel matrix method and order 2 is selected for these four 
kinds cells, and then 5 parameters in the second-order system are 
identified by the least square method. The solution of the system 
can be easily calculated as follows. 
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The system parameters of the average of example cells are 
shown in Table 1. Twenty cells for each kind of cell are selected 
and two indentation process are made for each cell. The vector 
of these 5 parameters represents the elasticity ሺ݇௜ሻ and viscosity 
ሺܾ௜ሻ properties of a single cell respectively and therefore can be 
used to classify cell types and discriminate cellular state. 

However, the 5 parameters ݇଴,	݇ଵ,	ܾଵ,	݇ଶ,	ܾଶ in the second 
order system are not completely independent due to the fact that 
the physical elasticity and viscosity properties of a single cell 
usually co-exist and are highly correlated. Therefore, in this 
study, the principal component analysis (PCA) method is used 
to reduce the dimension of parameter vector. The main idea of 
PCA is to calculate the eigenvalue of covariance matrix of 
sample matrix. The first principle component owns the biggest 
eigenvalue so it has the biggest distinction degree. We calculate 
the sample matrix, that we mentioned above, with the dimension 
160ൈ5, and find that the eigenvalues of the first two principle 
components are bigger than 1 and the total contribution rate of 
the first three principle components equals to 96.35%. It means 
that the first three principle components include about 96.35% 
information of all the five parameters (Table 2). The first three 
principle components of the four different kinds of cells are 
shown in Fig. 4. It can be obviously seen from Fig. 4 that 
different kinds of cells present different clustering patterns and 
this method provides a label-free biomarker for cell recognition. 
MCF-7 and Neuro 2A have a more intensive cluster patterns 
than the other two kinds of cells. The causes of this phenomenon 
maybe the different shape of cells. As shown in Fig.5, different 
MCF-7 and Neuro 2A cells have similar shapes respectively, and 
the Hek 293 and L929 cells do not have fixed shapes. We can 
use this method to classify different kind cells, also, cells with 
different states, for example, normal cells and pathological cells. 
Moreover, effects of drugs on cells can be evaluated with this 
method. 

TABLE I.  FOUR DIFFERENT KINDS OF CELLULAR PARAMETERS 

Cellular 
Types 

Elastic Parameters 
Viscosity 

Parameters 
࢑૙ ࢑૚ ࢑૛ ࢈૚ ࢈૛ 

MCF-7 2.984 1.110 1.385 0.118 3.108 

Neuro 2a 2.425 1.519 1.259 0.242 1.934 

Hek 293 1.099 0.472 0.609 0.158 1.956 

L929 0.534 0.195 0.235 0.0124 0.374 

TABLE II.  THE RESULTS OF PCA OF CELLULAR PARAMETERS 

Principle 
component

Eigenvalue
Difference 

value 
Contributi

on rate 
Total 

1st  3.3158 2.2298 66.3153 66.3153 

2nd  1.0860 0.6685 21.7197 88.0351 

3rd  0.4175 0.2631 8.3498 96.3849 

4th  0.1544 0.1281 3.0884 99.4733 

5th  0.0263 - 0.5267 100 



 
Fig. 4. Principle component analysis of four kinds of cells. These four pictures 

are the first component to the second component, the first component to 

the third component, the second component to the third component, and 

distribution of different cells in these three components space. 

 
Fig. 5. Different geometry of four different kinds of cells. 

IV. CONCLUSION 

To be conclude, we presented a modelling method for the 
mechanical properties of a single cell and an application of this 
method, which classify different kinds of cells based on a 
principle component analysis of the parameters of cellular 
dynamic model. The cell’s viscoelastic parameters model can be 
obtained from experimental stress relaxation curves. The 5 
parameters 𝑘0 , 𝑘1 , 𝑏1 , 𝑘2 , 𝑏2  in the second order system can 
describe the mechanical properties in terms of elasticity and 
viscosity. Then, by means of PCA, a classification of different 
kinds of cells was given. Finally, we demonstrated that the 
parameters identified with this model represent the cellular 
mechanical properties and can be used to classify cell types and 
discriminate cellular state. The future work on the effects of 
different drugs on cells are under the authors’ investigation.  
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