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Abstract: This paper presents a novel third-order super-twisting-like integral sliding mode controller
(3-ISMC) for trajectory tracking of nanopositioning applications. Different from traditional sliding
mode control methods presenting with chattering problems, the proposed approach provides con-
tinuous control inputs, which brings much convenience for practical applications. Moreover, the
fixed-time convergence of the proposed 3-ISMC is guaranteed independently of initial conditions.
The estimation of the fixed convergence time and stability are derived based on the Lyapunov method.
Simulation results demonstrate that the proposed controller exhibits chattering free and quick tran-
sient response performance for a piezoelectric nanopositioning system under model uncertainties
and external disturbances.

Keywords: piezoelectric actuators; piezoelectric nanopositioning; fixed-time control

1. Introduction

The last decades have witnessed the increasing popularity of piezoelectric actuators
among nanopositioning platforms, which provide several advantages including ultra-fine
resolution, quick response speed, large energy density, and no backlash. Such piezoelectric-
driven nanopositioning devices exhibit a variety of applications, such as atomic force
microscope [1,2], biological manipulation [3] and precision machining [4]. Nevertheless,
the intrinsic hysteresis of piezo-driven stages, which is amplitude- and rate-dependent,
leads to challenges of its precise positioning. These nonlinear characteristics need to be
suppressed so that piezoelectric actuators can be utilized in nanopositioning applications.

Various control methods have been proposed to cope with this limitation in the litera-
ture; voltage based control methods can be mainly divided into three parts: (1) feedforward
control with inverse hysteresis model; (2) closed-loop control with an approximate hys-
teresis model; and (3) adaptive control by considering hysteresis as disturbances. The first
category constructs mathematical models that describe hysteresis behaviors precisely, and
using its inverse model cancels the hysteresis characteristic. Several kinds of hysteresis
model have been developed, for example, the Bouc–Wen model, the Prandtl–Ishlinskii
model, the Duhem model, the polynomial model, and so forth [5–7]. More sophisticated
methods are also proposed to deal with the rate-dependent characteristic of hysteresis,
for example, machine learning-based models [8], neural network-based modesl [9,10],
modified PI models [11], and rate-dependent Bouc–Wen models [12], and so forth. How-
ever, these hysteresis models often exist in complicated structures, it is time-consuming
to identify the parameters accurately, and the system dynamics always change with load
variance that deteriorates the accuracy of feedforward controllers.

Sliding mode control (SMC) is an effective nonlinear control approach to cope with var-
ious disturbances and system uncertainties [13]. However, the traditional SMC algorithms
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guarantee the convergence of tracking errors only asymptotically, which means that to
drive the tracking errors to zero takes infinite time. To alleviate this shortcoming, a terminal
sliding surface is proposed in the literature, which can achieve finite-time convergence
using a nonlinear sliding surface. The crucial feature lies in the nonlinear fractional order
manifold, which leads the system to achieve finite-time convergence to zero. Although the
faster convergence rate can be obtained in the neighborhood of the origin, the convergence
rate deteriorates prominently when the system states of the system are far away from the
origin. This indicates that convergence time may become unacceptably large for large initial
conditions. To improve the performance in terms of convergence rate, the design of SMC
with fixed-time convergence, which is independent of initial conditions, has increasingly
attracted the attention of researchers [14,15].

Furthermore, the chattering problem, which is caused by discontinuous control inputs,
is another disadvantage of the conventional SMC algorithm. This problem may excite
undesirable dynamics behavior of the system and is prone to damaging the actuator.
Moreover, the actual actuator always has a response time, which means that it cannot
change infinitely fast [16]. To tackle control chattering, high-order sliding mode control
(HOSMC) is proposed in the literature [17,18]. To enhance control performance further,
integral sliding surface is adopted to eliminate the reaching phase of control law [19,20].
Combined with the above two methods, a third-order SMC with an integral type of
terminal sliding surface is proposed in [21], and it achieves a finite-time convergence and
eliminates the chattering problem. The second-order sliding mode controller with a fixed
time convergence time has been also designed in [22], in which the upper bound of its fixed
convergence time was estimated. Nevertheless, to achieve better precision positioning and
a faster transient response, a third-order sliding mode control with fixed convergence time
is needed.

The main contribution of this paper is the development of a fixed-time 3-ISMC al-
gorithm. The proposed approach guarantees that the convergence time is fixed and
is independent of initial conditions. The structure of the following parts is as follows.
Section 2 formulates the problem. Section 3 presents the controller design of fixed-time
third-order SMC. Section 4 illustrates the simulation results, and conclusions are summa-
rized in Section 5.

2. Problem Formulation
2.1. Dynamical Model

Consider a second order piezoelectric nanopositioning stage system [21]:

Mẍ(t) + Bẋ(t) + Kx(t) = Du(t) + Fh(t) + P(t), (1)

where x(t) ∈ R is the displacement output, and M, B and K are positive constants which
represent the mass, damping coefficient and stiffness of the dynamical system, respectively.
The constant D is the scaled coefficient of the control input. u(t) ∈ R signifies the exci-
tation voltage. Fh(t) denotes the nonlinear effects and P(t) represents the total bounded
perturbations and model uncertainties.

The objective of this work is to design a state-feedback control law u(·), such that the
displacement x(t) tracks the desired reference trajectory xd(t) precisely. Specifically, the
origin of the resulting closed-loop system needs to be globally fixed-time stable, and the
convergence time of the trajectories can be estimated.

The dynamical model (1) can be represented as follows:

ẍ(t) + a1 ẋ(t) + a0x(t) = b0u(t) + d(t), (2)

where a1 = B
M , a0 = K

M , b0 = D
M , and d(t) = Fh(t)+P(t)

M . Instead of building an accu-
rate nonlinear effect model, the nonlinearity and uncertainties are considered as lumped
disturbance d(t), which can be estimated online in the following subsection.
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2.2. Disturbance Estimation

The lumped disturbance d(t) can be estimated in real time by the perturbation estima-
tion approach proposed in [23]

d̂(t) = ẍ(t) + a1 ẋ(t) + a0x(t)− b0u(t− T), (3)

where T denotes the sampling time. Hence, the nonlinear dynamics (2) can be rewritten
into the form of double-integrator dynamics with a matched disturbance:{

ẋ1(t) = x2(t),

ẋ2(t) = −a1x2(t)− a0x1(t) + b0u(t) + d̂(t) + d̃(t),
(4)

where x1(t) := x(t) is the displacement of the nanopositioning stage system, x2(t) is the lin-
ear velocity of the displacement, and d̃(t) := d(t)− d̂(t) is the disturbance estimation error.

It is observed that the disturbance estimation error d̃(t) is always present due to the
sampling time T in practice. However, as the sampling time is usually a small number, it is
reasonable to assume that d̃(t) is bounded. Thus, the variation rate can be considered to be
bounded, that is, | ˙̃d(t)| < δ, where δ is a known constant bound.

Definition 1. A control law is said to globally stabilize the plant (1) in finite-time, if for any initial
condition x0 := [x10, x20] ∈ R2 there exists a time moment T(x0) such that one has x(t) = 0 for
all t ≥ T(x0), for any admissible disturbance d(t).

Definition 2. A control law is said to globally stabilize the plant (1) in fixed-time, if for any initial
condition x0 := [x10, x20] ∈ R2 there exists a time moment T, which is independent of the initial
conditions, such that one has x(t) = 0 for all t ≥ T, for any admissible disturbance d(t).

3. Design of Controller

For the convenience of control design, we denote the tracking error as

e(t) := x(t)− xd(t), (5)

where xd(t) is the desired tracking trajectory. The integral type of terminal sliding surface
is defined as

s(t) := e(t) + c1

∫ t

t0

eα(τ)dτ + c2

∫ t

t0

eβ(τ)dτ + ζ, (6)

where c1, c2 > 0, α > 1, 1
2 < β < 1 are constants, and ζ is a constant control parameter

depending on the initial conditions. The time derivative of s is computed as

ṡ(t) = ė(t) + c1eα(t) + c2eβ(t). (7)

Theorem 1. Consider the second-order system (2) with the sliding surface given by (6). Then, the
sliding surface is a fixed-time stable manifold, and the reaching time of the trajectories is estimated as

T(e0) < Tmax :=
1
c1

1
α− 1

+
1
c2

1
1− β

. (8)

Proof. Consider the Lyapunov candidate V(e) = e2 ≥ 0, where the time derivative along
the trajectories is

V̇(e) = 2eė. (9)

Assume that s ≡ 0, which yields the following expression from (7)

ė(t) = −c1eα(t)− c2eβ(t). (10)
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Then, substituting (10) into (9) yields

V̇(e(t)) = 2e(t)
(
−c1eα(t)− c2eβ(t)

)
= −2c1

(
e(t)2

) α+1
2 − 2c2

(
e(t)2

) β+1
2

= −2
(

c1V(e(t))
α−β

2 + c2

)
V(e(t))

β+1
2 .

(11)

Since c1V(α−β)/2 ≥ 0, the following inequality holds:

V̇(e) + c(V(e))η ≤ 0, (12)

where c = 2c2, η = (β + 1)/2, and 0 < η < 1. Then, the error dynamics on the sliding
manifold are global finite-time stable [24] and the reaching-time function is given by

Tf (e0) ≤
1

c(1− η)
V(1−η)(e0). (13)

It is noted that the finite-time reaching time depends on the initial condition e0. To
eliminate the dependence of the initial condition, assuming that V(e(t)) 6= 0, one obtains

1

V
β+1

2

dV
dt

= −2
(

c1V
α−β

2 + c2

)
,

which yields

1
1− β

dV
1−β

2

dt
= −

(
c1V

α−β
2 + c2

)
.

Let z = V
1−β

2 , we have

1
c1z1+ε + c2

dz = −(1− β)dt,

where ε := (α− 1)/(1− β). Let ϕ(l) =
∫ l

0
1

c1z1+ε+c2
dz, integrating both sides of the above

equation yields
ϕ(z(t)) = ϕ(z(0))− (1− β)t.

Note that the function ϕ(l) is monotonically increasing. Since ϕ(z) = 0 if and only if
z = 0 (implying that V = 0), one obtains

lim
t→T(e0)

V(e(t)) = 0,

where T(e0) is the settling time given by

T(e0) =
1

1− β
ϕ(z(0)) =

1
1− β

ϕ
(

e1−β(0)
)

.

Then, the bounded T(e0) can be obtained by
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lim
e0→+∞

T(e0) = lim
z0→+∞

1
1− β

ϕ(z(0))

=
1

1− β

(∫ 1

0

1
c1z1+ε + c2

dz +
∫ +∞

1

1
c1z1+ε + c2

dz
)

≤ 1
1− β

(∫ 1

0

1
c2

dz +
∫ +∞

1

1
c1z1+ε

dz
)

=
1

1− β

(
1
c2

+
1

c1ε

)
=

1
c1

1
α− 1

+
1
c2

1
1− β

.

Note that V(e(t)) = 0 implies that e(t) = 0.
It can be observed that the settling time function eliminates the dependence of the

initial condition e0. As a result, the convergence time can be prescribed.

We summarize our main results in the following theorem.

Theorem 2. Consider the second-order system (2) with the feedback control law (14). Then, the
control law (14) globally stabilizes system (2) in fixed-time with a continuous control input.

u =
1
b0
(ueq + un), (14)

with
ueq = a0x1 + a1x2 + ẍd − c1αeα−1 ė− c2βeβ−1 ė,

un = −k1|φ|1/2sign(φ)− k2|φ|psign(φ) + ψ,

ψ̇ = −k3sign(φ),

φ = ṡ + k4|s|2/3sign(s),

(15)

where k1, k2, k4 > 0 are positive control gains, k3 > | ˙̂d|, and α > 1, 1
2 < β < 1.

Proof. Taking the time derivative of both sides of (7) yields

s̈ = ë + c1αeα−1 ė + c2βeβ−1 ė. (16)

Then, take the time derivative of (5) twice, and substitute it into (16) resulting in

s̈ =(ẍ− ẍd) + c1αeα−1 ė + c2βeβ−1 ė

=b0u− a0x1 − a1x2 + d− ẍd + c1αeα−1 ė + c2βeβ−1 ė.
(17)

Substituting control law (14) into (17), we have

s̈ = −k1|φ|1/2sign(φ)− k2|φ|psign(φ) + ψ + d̂,

ψ̇ = −k3sign(φ).
(18)

Denoting ξ := ψ + d̂, the above equations become

s̈ = −k1|φ|1/2sign(φ)− k2|φ|psign(φ) + ξ,

ξ̇ = −k3sign(φ) + ˙̂d.
(19)
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Let us denote σ1 := s, and then the above equations can be rewritten into the following
form:

σ̇1 = σ2,

σ̇2 = −k1|φ|1/2sign(φ)− k2|φ|psign(φ) + σ3,

σ̇3 = −k3sign(φ) + ˙̂d,

(20)

where φ = σ2 + k4|σ1|2/3sign(σ1). Note that Equation (20) has a structure similar to
that of the third-order super-twisting algorithm (3-STA) with the assumption that ˙̃d is
bounded [17].

Denote b·eq = | · |q sign(·), and consider the following continuous Lyapunov candi-
date for the stability analysis of (20)

U(σ) = q1|σ1|
4
3 − q12bσ1e

2
3
(

σ2 + k4bσ1e2/3
)

+ q2

∣∣∣σ2 + k4bσ1e2/3
∣∣∣2 + q13bσ1e

2
3 bσ3e2

− q23

(
σ2 + k4bσ1e2/3

)
bσ3e2 + q3|σ3|4.

(21)

Note that the Lyapunov function (21) is differentiable everywhere but it is not Lipschitz
at the origin. Lyapunov function (21) can also be rewritten into a quadratic form of the
vector ΞT =

[
bσ1e2/3 φ bσ3e2

]
, that is,

U(Ξ) = ΞTQΞ, where Q =

 q1 − 1
2 q12

1
2 q13

− 1
2 q12 q2 − 1

2 q23
1
2 q13 − 1

2 q23 q3

. (22)

Select parameters in the Lyapunov function (21) such that

q1 > 0, q1q2 >
1
4

q2
12,

q1

(
q2q3 − q2

23

)
+

q12

2

(
− q12q3

2
+

q13q23

4

)
+

q13

2

( q12q23

4
− q2q13

2

)
> 0.

(23)

Then, the matrix Q > 0 and therefore U(σ) are positive definite and radically un-
bounded. In this case, U̇(σ) satisfies the following inequality,

U̇ ≤ −κ1U3/4 − κ2Up, (24)

for some positive constants κ1 and κ2 for the set of control gains k1, k2, k3 and k4. It follows
from (24) that the closed-loop system (20) is fixed-time stable. Then, the reaching time
of the sliding variable can be further estimated using the inequality (24) [25]. Finally, it
follows from Theorem 1 that on the sliding manifold the error trajectories converge to the
origin in fixed time (8), which completes the proof.

4. Simulation Results

This section illustrates the effectiveness of the proposed third-order fixed-time super-
twisting-like sliding mode controller by conducting a simulation study. The Hammerstein-
based model is adopted to describe the dynamic characteristics of the piezoelectric nanopo-
sitioning stage. In particular, the Bounc–Wen model is employed to express static nonlinear,
and a transfer function is used for capturing the rate-dependent hysteresis of the stage,
where the framework is described in Figure 1.
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Figure 1. The framework of the Hammerstein model.

The nonlinear dynamics of the piezoelectric nanopositioning stage in simulations are
given as: {

w(t) = du(t)− h(t),

ḣ(t) = b1u̇(t)− b2|u̇(t)|h(t)− b3u̇(t)|h(t)|,
(25)

in which the model parameters are identified by the particle swarm optimization algorithm
as b1 = 13.6612 µm/V, b2 = 0.6449 V−1, b3 = 0.0118 V−1, and d = 27.1141N· V−1.

The transfer function is identified as:

G(s) =
3.2066× 106

s2 + 1502s + 3.2066× 106 (µm/V). (26)

The parameters of dynamic model (2) are calculated as a0 = 3.2066× 106 N·µm−1·Kg−1,
a1 = 1502 N·s·µm−1Kg−1, and b0 = 8.7× 107 N·V−1·Kg−1, respectively. Hence, it can be
seen that the hysteresis loop varies dramatically with input frequency from 1Hz to 100 Hz
in Figure 2.

0 1 2 3 4 5 6
0

2

4

6

8

Figure 2. The hysteresis loop of the simulated model from 1Hz to 100 Hz.

The controller parameters of the proposed 3-ISMC in (14) are shown in Table 1; the
sampling time is 1× 10−4 s. The position output is available for the nanopositioning stage,
and thus the initial position error ζ can be calculated in advance. Therefore, the value of
sliding surface (6) can always be set to zero in the initialization. As a result, the reaching
phase of the control law can be eliminated.

Remark 1. The nonlinear control law un in (14) is divided by b0, where the magnitude is at
the level of 107. The reason for the parameter b0 being so large is that the displacement of the
nanopositioning system is at the micron level, which results in a consequence that the magnitudes
of control gains k1, k2, k3, k4 vary considerably. For the three terms in the control law un, they are
expected at similar magnitude levels to be effective in the control law, which leads to the following
gain tuning rule. Specifically, k4 can be chosen first to make the controller sensitive to the tracking
error. Then, k2, k3, k4 can be determined by the rule of guaranteeing each term in un at similar
magnitude levels to be effective in the control law.
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Table 1. Control Parameters of the Proposed Controller.

Parameter α β c1 c2 k1 k2 k3 k4

Value 2 0.6 3 10 6× 104 8 1× 1010 340

(1) Convergence Properties of the Proposed Fixed-time Sliding Surface: A high initial
condition σ(0)=[10, 100, 0] is used for illustrating the performance of the proposed fixed-
time sliding surface, as shown in Figure 3. It can be observed that the states of (20) converge
to zero very fast, which indicates that the convergence time is independent of the initial
conditions.

0 1 2 3 4 5

0

5

10

1

0 1 2 3 4 5
-100

0

100

2

0 1 2 3 4 5

Time(s)

0

2

4

3

Figure 3. Proposed 3-ISMC control: Time histories of σ0, σ1, and σ2 corresponding to initial condition
of σ(0)=[10, 100, 0].

(2) Step Position Tracking: In general, the trade-off between the response speed and
overshoot has to be considered during the controller design. The controllers for nanopo-
sitioning applications have to be sensitive to minor tracking errors while the overshoot
of step response needs to be reduced. Step position tracking is conducted to illustrate
the response performance of the proposed 3-ISMC algorithm. It can be observed from
Figure 4 that the states exhibit a fast response without the overshoot phenomenon, while
the control input keeps continuous. However, the conventional 3-STA algorithm has a
weaker performance compared with 3-ISMC.

(3) Sinusoidal Position Tracking: To demonstrate the performance of the proposed
control approach for particular applications, a 20 µm peak-to-peak sinusoidal reference
trajectory with frequency of 10Hz is used in simulations for position tracking control, as
shown in Figure 5. Even though the nonlinear hysteresis h(t) of plant (25) is unknown for
the proposed control law, the desired trajectory is tracked preciously. The conventional
3-STA controller presents a maximum absolute error (MAXE) of 76.2 nm and a root mean
square error (RMSE) of 27.4 nm and the proposed 3-ISMC controller generates a MAXE
of 11.9 nm and an RMSE of 3.6 nm, which are reduced to 15.62% and 13.12% by the
proposed 3-ISMC method, respectively. Additionally, an initial position error of 10 µm is
imposed for sinusoidal reference trajectory tracking simulation to describe the superiority
of convergence, as shown in Figure 6.
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Figure 4. Proposed 3-ISMC control: Time histories of state variables and control inputs corresponding
to initial condition of x0=[5, 100].

Figure 5. Simulation results of 10Hz sinusoidal trajectory tracking. (a) Position tracking results.
(b) Position tracking error. (c) Control inputs. (d) Sliding variable.
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Figure 6. Simulation results of 10Hz sinusoidal trajectory tracking. (a) Position tracking results.
(b) Position tracking error. (c) Control inputs. (d) Sliding variable.

(4) Robustness Testing: In order to illustrate the robustness of the proposed controller,
system parameters adopted in the proposed controller a0, a1, b0 float up to 1.1 times of the
original values, and the following external disturbance signal (27) is injected into 20 µm
peak-to-peak sinusoidal trajectories with a frequency of 10Hz for position tracking control,
as shown in Figure 7.

d(t) = [0.05 sin(100πt) + 0.25 sin(2πt) + 0.3]µm. (27)

It can be seen that both 3-STA and 3-ISMC offer a continuous sliding surface and
smooth control efforts while the hyper external disturbance is alleviated. Particularly,
the proposed 3-ISMC achieves an RMSE of 0.5188 µm for 10Hz sinusoidal trajectories
with disturbance, which is smaller than the RMSE of 1.7780 µm achieved by 3-STA. The
comparison results of trajectory tracking with disturbance under difference frequencies
(5–50 Hz) is shown in Table 2; it can be seen that the proposed method maintains a
superior performance of RMSE compared with conventional 3-STA, which proves that
the developed 3-ISMC method exhibits better robustness under system uncertainties and
external disturbances.

It is noted that, although restrictions on the magnitude of control inputs are not
imposed in the simulations, from a practical viewpoint, the applied voltages are still
realistic in all shown simulation results. However, as shown in Figure 7, the control voltage
gradually decreases as the amplitude of the disturbance increases. In practice, the range
of control voltages for the piezoelectric stages is, in general, from −1 V to 10 V. Thus, it
may exceed the lower bounds of the control voltage while the disturbance reaches a certain
large value, which leads to the actuator being in saturation with the proposed controller.
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Figure 7. Simulation results of 10Hz sinusoidal trajectory tracking with external disturbance. (a) Position
tracking results. (b) Position tracking error. (c) Control inputs. (d) External disturbance signal.

Table 2. Comparison Results of Trajectory Tracking with Disturbance.

Controller Type 5 Hz Sinewave 10 Hz Sinewave 20 Hz Sinewave 50 Hz Sinewave

3-STA (µm) 1.7782 1.7780 1.7778 4.3219
3-ISMC (µm) 0.5914 0.5188 0.9703 0.7348

5. Conclusions

In this paper, the third-order super-twisting-like sliding mode controller (3-ISMC)
has been developed for trajectory tracking of the piezoelectric nanopositioning stage.
The stability and fixed-time convergence properties of the proposed method have been
theoretically demonstrated, and the effectiveness of 3-ISMC has been verified on a series
of simulation studies. Particularly, the 3-ISMC shows a quick response independently of
initial conditions, a smooth control input without chattering, and excellent performance
of disturbance reduction. In future work, the proposed approach will be implemented
on a physical piezo-driven nanopositioning stage to verify its performance for practical
applications; an adaptive gain method will also be developed to adjust control gains online
to improve performance further.
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