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Abstract: This paper investigates extremum seeking control for a torque-controlled antenna
pointing system without direct angular measurements. We consider a two-degree-of-freedom (2-
DOF) antenna system that receives an unknown signal from its environment, where the signal
strength varies with the antenna’s orientation. It is assumed that only real-time measurements
of the signal are available. We develop an extremum seeking control strategy that enables the
antenna to autonomously adjust its direction to maximize the received signal strength based on
the symmetric product approximation. Under suitable assumptions on the signal function, we
prove local practical uniform asymptotic stability for the closed-loop system.
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1. INTRODUCTION

Satellite communication is one of the fastest-growing fields
in science and technology, enabling global information
exchange. Antennas play a crucial role in signal transmis-
sion and reception, with the quality of the received signal
depending on the satellite’s relative position and the an-
tenna’s orientation. However, manual adjustments to the
antenna’s orientation are often impractical, particularly
when antennas are mounted on mobile vehicles or used
in large-scale systems. Therefore, to ensure the strongest,
best-quality signal reception, automatic antenna pointing
control systems are essential for accurately aligning anten-
nas with the signal source (Mulla and Vasambekar, 2016).

Traditional antenna pointing control strategies, such as PI,
LQG, and H, often assume that the reference attitude
of the antenna is known, and the difference between the
reference and the antenna attitude as sensed by encoders
(Gawronski, 2001, 2007). In many practical scenarios,
it is reasonable to assume that the antenna attitude is
measurable by encoders. However, the reference (desired)
attitude of the antenna is usually unknown, which is
typically determined by the signal source. In general, the
desired antenna direction is the one that maximizes the
received signal strength. In such cases, traditional antenna
pointing control algorithms may not be applied.

Extremum seeking is a real-time model-free optimization
approach that is applicable to dynamical systems (Ariyur
and Krstié, 2003; Scheinker and Krstié¢, 2017). The interest
in extremum seeking algorithms is greatly motivated by
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various real-world problems, which require optimizing the
performance of dynamic systems based on measurable
but analytically unknown functions. Applications include
localization of sources for autonomous vehicles (Suttner,
2019; Wang et al., 2023), maximum power point tracking,
and bioreactor growth rate optimization, etc. We refer the
reader to Scheinker (2024) for an interesting survey.

According to different types of averaging techniques, ex-
tremum seeking schemes can be categorized into classical
averaging-based (Ariyur and Krsti¢, 2003), Lie bracket
averaging-based (Diirr et al., 2013, 2017), and symmet-
ric product approximation-based seekers (Suttner, 2022;
Suttner and Krsti¢, 2023). The classical averaging-based
approach and the Lie bracket averaging-based approach
work well for first-order kinematic systems; however, their
extension to second-order mechanical systems is limited.
The symmetric product approximation-based approach,
which is based on the averaging results in Bullo (2002) for
mechanical systems under vibrational control, is applicable
to a much larger class of (kinematic-kinetic) mechanical
systems. Applications of this strategy to autonomous ve-
hicles can be found in Suttner (2019); Wang et al. (2023).

Applying extremum seeking strategies to antenna pointing
systems is intriguing because, as mentioned earlier, the
desired antenna attitude is determined by an analytically
unknown signal function and is typically unknown. Ex-
tremum seeking methods offer an alternative approach to
adjusting the antenna’s orientation to maximize the re-
ceived signal strength. In Shore et al. (2024), three classical
averaging-based extremum seeking methods for antenna
pointing are compared under different simulation scenar-
ios. The methods proposed in Shore et al. (2024) rely on
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the Taylor series approximation of the objective function,
however, no stability analysis or results are provided.

In this paper, we study the problem of extremum seeking
control for a torque-controlled antenna pointing system.
We consider a two-degree-of-freedom (2-DOF) antenna
system that receives an unknown signal from its environ-
ment, where the signal strength varies with the antenna’s
orientation. Only real-time signal measurements are as-
sumed to be available. We develop an extremum seeking
control strategy based on the symmetric product approx-
imation, enabling the antenna to autonomously adjust its
direction to maximize the received signal strength. The
contributions of this paper can be summarized as follows:
(i) From the theoretical viewpoint, we provide a stability
proof for the closed-loop system. Specifically, we show
that under suitable assumptions on the signal function,
the origin of the closed-loop system is locally practically
uniformly asymptotically stable. (ii) From the practical
viewpoint, the proposed seeking scheme does not require
posture measurements, relying only on real-time signal
measurements. Its structure is exceptionally simple and
easy to implement—the measured signal is multiplied by
periodic signals and fed into the torque input. To the best
of the authors’ knowledge, this marks the first application
of the symmetric product approximation-based extremum
seeking approach to antenna pointing systems.

2. PROBLEM STATEMENT AND PRELIMINARIES

Notation: Let | - | denote the Euclidean norm on R™.
For real matrices A, we use the matrix norm |A| :
sup{|Az| : |z| 1}, and I,xn, € R™ ™ the identity
matrix. Recall that for any real matrix A := [a;;] € R™*P,
|Al| < \/npmax; ;|a;;|. We use the notations s := sin(f)
and ¢y := cos(6) for simplicity. Throughout this article, we
omit the arguments of functions when they are clear from
the context.

2.1 Modeling of the Antenna Pointing System

Consider a simplified 2-DOF antenna system shown in
Fig 1. It is modeled as a rectangular cuboid supported
by a frame with respect to which the antenna rotates by
the angle #;. This frame in turn is attached to the disk
that rotates about the vertical axis by the angle 6. Both
rotations are actuated by two independent motors whose
torques are control variables 7 and 7o, respectively. Two
reference frames are introduced to describe the motion of
the antenna: the stitlonary reference frame 7, with unit
vectors [ J and K, and the body-fixed reference frame
.,_4) whose coordlnate system, with unit vectors z ] and
k, is fixed at the mass center of the antenna. Since the
antenna is modeled as a rectangular cuboid, axes passing
through L its mass center that are parallel to the unit vectors
7, 7, k are principal axes of inertia. In the principal
axes of inertia, the equations of rotational motion for the
antenna are given by

M, = Iyw, — (I, —
My =Ty, — (I, — Ip)w,we, (1b)
M, = Iz — Iy)wawy, (1c)

where I, I,;, I, are antenna’s principal moments of inertia;
Wz, Wy, w, are components (in projection onto A) of the

Iz)wywza

(1a)

Wz —

Fig. 1. Schematic diagram of the antenna pointing system.

antenna’s angular velocity vector @ 4 sz with respect to Z,
ie., Gz = Wy i + wy7 +w. k. The terms M,, M,, M,
are components (in projection onto A) of the total external
moment M actlng on the antenna w1th respect to its mass
center, i.e., M= M, it +My] + M, .

Next, we relate the angular rates wy, Wy, W With the
angles 01 and 0. Note that wA/I = 601 + 92K and
K = —51n91 i +cos€1k; Thus

WA/I = 792 s1n91 i+ 9174— 92 cos@lz,
which implies that
Wy = 91, w, = 0 cosb. (2)
The total external moment M acting on the antenna

consists of two torques rotating it about 7 and K axes and
correspondin, ng rotational damplng moments along those
axes, t.e., M = (nn — d191)] + (12 — d202) , where
dy >0 and dy > 0 are rotational damping coefficients.
Substituting K = —sin 917 + cos 91? into M yields

Wy = —Bysin 64,

M, = —7ysin 6y + dobs sin 0, (3a)

M, =7, — dyf;, (3b)

M, =75 cos 0] — dabf cos 0. (3¢)
Here 7 and 79 are control variables.

Consequently, the model of the antenna pointing system
can be in the following Euler-Lagrangian form

6=J(O)w (4a)
I+ Cw)w+ Dw=J0) "7 (4b)
where 0 == [0 02]T, w = [wy wy w,|T, T = [11 ™|,
I :=diag{I,,I,,1.} > 0, D := diag{ds,d:,d>} > 0, and
0 Lw, —ILw,
J(0) = [_g b } L C(w) = l—fzwz 0 L,
b1 ¥ %6 Lw, —ILw, 0

2.2 Problem Statement

We assume that the antenna receives an analytically un-
known signal from its environment, and the received power
p is measurable in real-time. The objective is to design a
feedback control law 7 to adjust the antenna’s orientation
6 to maximize the received power p(6(t)), i.e., to solve
the maximization problem max, p(f) in real-time. How-
ever, to maintain consistency with the extremum-seeking
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literature and without loss of generality, we consider the
equivalent minimization problem, i.e., min, h(#), where
h(8) := —p(0) 4+ po and pp can be an arbitrary real num-
ber. We make the following assumptions on the objective
function h.

Assumption 1. Assume that the angle-dependent nonlin-
ear cost function h(6) is smooth, positive everywhere, and
has a global minimum point. That is, there exists a unique
0y := [014 92*]T such that

oh oh

550 =0, and Zo(0)£0, VO£0.  (5)

Assumption 2. The cost function h is in the separable
form

h(0) = h1(01) + ha(62). (6)

Assumption 3. The Hessian matrix of the cost function is

globally bounded. That is, there exists hp; > 0 such that

0%h

Hagg(Q)H < hm, V0. (7)

The antenna can measure the value of h(6(t)) in real-time.

Note that both the extremum 6, and the gradient %(9)
are unknown.

Remark 1. Assumption 1 is a regular assumption in the
extremum-seeking literature. Assumptions 2 and 3 are
technical assumptions. Specifically, Assumption 2 shows
that the partial derivatives of h in each direction are
independent. One should notice that the objective function
used in Shore et al. (2024) satisfies Assumptions 1-3. In
fact, modeling the received power as a Gaussian function
of the pointing error yields a quadratic objective function
that satisfies Assumptions 1-3.

2.8 Practical Stability

We use the same stability notion as in Moreau and Aeyels
(2000); Diirr et al. (2013). Consider the time-varying
system that depends on a parameter ¢ € (0, &¢]

&= f(tz), xeR", (8)
where g9 > 0. We assume that for each ¢, the function f€ is
continuous, and f¢(t,-) is locally Lipschitz uniformly in ¢.
For every e € (0,20] and every t € R, let ¢5 : R™ — R" be
a diffeomorphism. Denote the new variable as & := ¢5(x).
Definition 1. (Diirr et al. (2013)). Let z, € R™ and let S
be a neighborhood of z, in R"™. We say that x, is S-
practically uniformly asymptotically stable for (8) in the
variable Z := ¢$(z) if the following two conditions are
both satisfied:

(i) Practical Uniform Stability. For every c¢; > 0, there
exist ¢o and €9 > 0 such that for all € € (0,e0] and
all to € R

‘f07$*|§02 — \:E(t)fx*\gcl, vtzto,

where Z(t) := ¢5(z(t)) and z(t) represents the solu-
tion of (8) with initial condition z(to) = (¢£) ™" (Zo).

(ii) S-Practical Uniform Attractivity. For all ¢1,co > 0,
there exist T, R, and 9 > 0 such that for all € €
(0,80], all tg € R, and all o € S with |i‘o — 1‘*| <c

it)— x| <R, Vt>to,

|i‘(t) —$*| <cy, Vt>tg+T,

where Z(t) := ¢5(z(t)) and x(t) represents the solu-

tion of (8) with initial condition z(to) = (¢£) ™" (Zo).

If the conditions in Definition 1 are satisfied for an un-
known, arbitrarily small neighborhood S of z, in R", then
we say that x, is locally practically uniformly asymptoti-
cally stable for (8) in the variable Z. If there exists a vector
field f such that f© = f for all ¢ € (0,&¢], then we omit
the word “practical” in Definition 1.

Next, let us consider the time-varying system

z=f(t,z), TR, (9)
where f is locally Lipschitz in & uniformly in ¢.
Definition 2. (Converging Trajectories Property). We say
that the solutions of (8) in the wariable & := ¢5(x)
approzimate the solutions of (9), if for every T, d > 0 and
every compact set K C R"™, there exists €9 > 0 such that
for all ¢y € R, and all zy € K, the following implication
holds: If the solution of (9) with initial condition Z(ty) =
T satisfies Z(t) € K for every t € [to,to + T}, then for all
e € (0,e0], we have |Z(t) — z(t)| < d, V t € [to,to + T1,
where Z(t) := ¢5(x(t)) and x(¢) represents the solution of
(8) with initial condition z(to) = (¢£) ™" (Zo).
Proposition 1. (Suttner and Krsti¢ (2023)). Let z, € R"
and let S be a neighborhood of z, in R™. Assume that the
solutions of (8) in the variable Z := ¢$(x) approximate the
solutions of (9). If z, is S-uniformly asymptotically stable
for (9), then z, is S-practically uniformly asymptotically
stable for (8) in the variable Z.

3. MAIN RESULTS
3.1 Control Law

Now we introduce the component of the control law. Let
T be a positive real number. Let uy,us : R — R be two
T-periodic, zero-mean, independent perturbation signals,
where the zero-mean antiderivatives U; and Us of u; and
ug satisfy the orthogonality condition

T T ¢ .
T ifj—=
/ Uin)Uj(r)dr =42 0
0 0 ifi#jy
for i,j € {1,2}. For instance, we can choose u; and ug as
cos(qt) and sin(gt) for any ¢ # 0. The proposed extremum
seeking control law is given by

(10)

(11a)

(11b)

where ¢, k1, and k5 are positive control parameters. With
the control law (11) we obtain the closed-loop system

0=J(0)w
i+ Clw)w + Dw=J(0)T [”(a)m (z)] . (12b)

(12a)

9

where u() := [uy(-) u2(")]" and K := diag{ky, ko}. Next,
our averaging analysis will show that the term in the
bracket of (12b) approximates the negative gradient of the
function ih?

8.2 Averaging Analysis

Our goal is to derive the averaged system from the closed-
loop system (12) using the symmetric product approxi-
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mation. Here, we recall the approach proposed in Bullo
(2002); Bullo and Lewis (2005) and represent the results
in coordinates. Let us rewrite the closed-loop system (12b)
in the control-affine form

2
1 [t
0 =Y —U; | — Y; 0 ’ 1
6=+ 3 2w () i (13)
where

Yo(w) i= —I"'C(w)w — I Duw,

0 —I; s, kah(6)

Yi(0) == L 'k1h(8) |, Ya(6) := 0
0 I g, kah(6)

Then, it follows from Bullo (2002); Wang et al. (2023) that
the closed-loop system (12) can be approximated by the
symmetric product system

0=J0)w (14a)

I6+ C(@)o + Do = —g [(Y1:Y1)(8) + (Ya: Ya)(B)] (14b)

where the symmetric product of two vector fields X, Y : R? —

R3 corresponding to the system (4) is given by

0X oYy
In (14), the symmetric products (Y;:Y;) originates from
an iterated Lie bracket on the tangent bundle of the
configuration manifold. We refer the readers to the proof of
(Wang et al., 2023, Theorem 2) for more details. It follows
from Bullo (2002); Wang et al. (2023) that the solutions
of the closed-loop system (12) in the variables

2
~ t
0,0):=10,w— U; | - ) Yi(0
(6.) <,w > () <>)
approximate the solutions of (14). A direct computation
shows that

(X :Y)(0) 0)J(0)X(0). (15)

(16)

22 Oh !
(Y1:Y1)(0) = 2k11, 37(9)71(9) [1] ; (17)
1 0
oh —I; s0,
(Ya:Y2)(0) = 2k37(61) - (6)h(6) 0 ;o (18)
892 Iz_lcal

where r(61) := I 's5 +1;'¢c5 . Substituting (17)-(18) into
(14) yields the averaged system

0=J0)w (19a)

10h T -

I6+ C@)@ + Do=J(0)TAB) | -5 55 (e)h(e)] (19b)

where S

= kiI 0

A = |1y - 2

@ =[N ] 20)
and the term in the bracket of (19b) is exactly the negative
gradient of the function 1h(#)%. We conclude that the
solutions of the closed-loop system (12) in the variables
(16) approximate the solutions of (19).

3.8 Stability Analysis

Next, we provide sufficient conditions for the stability
of the averaged system (19). In general, analyzing the

stability of (19) directly using Lyapunov methods is chal-
lenging due to the presence of the term A(6;). However, the
analysis becomes significantly easier if A(-) is a constant
matrix. Notably, the averaged system (19) is reminiscent of
gradient systems if A(-) is a constant matrix. Furthermore,
if the function h is quadratic, then the averaged system
(19) is reminiscent of a Lagrangian system under PD
control, a topic that has been well studied. In fact, one
should notice that the matrix A(-) is uniformly bounded,
and the term r(6;) satisfies r(01) € [I; 1, I;!]. Hence, in
the following, we first analyze the averaged system (19)
under the assumption that the matrix A(-) is constant, i.e.,
A(-) = A = diag{\1, A2}, and provide a strict Lyapunov
function for the “frozen dynamics”. Then, we extend the
analysis to the case where A(-) varies, using the time-scale
separation method.

First, we show asymptotic stability for the corresponding
“frozen dynamics”

(21a)

(9)’1(9)1 , (21Db)

where A := diag{\1, A2} > 0. Define the new objective
function as

}_L(G) = )\1h1(91) + )\th(az), (22)

where functions hy and hg are given in Assumption 2.
Obviously, the functions h and h attain their minimum
values at the same point 0, due to the fact that A\, Ay > 0.

Let us consider the function

1= 2
(6.2,

It is clear that the function V; is position definite. Taking
the total derivative along trajectories of (21) yields

_ 1 1.
Vi(0 —0,,@) = 5*% + 1h(f))“’ - (23)

Vi=a' |-C(@)@— Do+ J(O)TA (—;%T(G)h(9)>]
1. 0h ~
+ 31855 (8) T ()
= - D <0, (24)

where we use the property that the matrix C(-) is skew-
symmetric and the fact that 9%(0) = A2%(0) everywhere.
Thus, we conclude that V; is a weak Lyapunov function
for the system (21), and asymptotic stability of the equi-
librium point (0, @) = (64, 0) comes from by verifying the
LaSalle’s condition on the set {V; = 0}. If the function h
is radially unbounded, we conclude that the equilibrium
point (8,@) = (6., 0) is globally asymptotically stable.

To proceed with the Lyapunov analysis for the averaged
system (19), we need a strict Lyapunov function for (21).
Define d,, := min{d,,dy,d.}, dy := max{d,,d,,d.},
I, = min{l,, I, I.}, and Iy := max{l;,I,,I.}. Let us
consider the function
Va(6,5) = o (BT B, (25)

where its total derivative along trajectories of (21) is
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+ G;LMIM|CJ|2

oh
prid)
where we use the facts that ||J(-)|| < v/6, 6, J(-)J ()7 = Iyxo,

1@ < VBlal, [C@)ll < 3Inlwl, 5% Ol < har, and
h(6) > h(6.) everywhere.

+ V6 [In|@| + 3In|@| + d] |l (26)

Note that |o| < 1/&«‘/1. Defining the function P; :
RZO — RZO as

Iy
Pi(l) :=+/6d 8V3l—— 27
1 (1) o= V6das + \Fﬂ?f (27)
we have
oh - oh
Vo < h(9) %(9) +6hMIM|@|2+P1(V1) 86( 0)| ||
It fOHOWb from Young’s Inequality that
= 2
_ h(0.) |Oh - 1 9112
P; — — P, .
(V) |55 ) lol < 32 (@) + 504
Defining the function P, : R>9 = R>¢ as
1
Py(l) := Iy + ——Py(1)? 2
5 (1) == 6harIn + s 1 (1) (28)
yields
. 1 oh - |?
Va < _Zh(e*) %(9) + Py(V)|w]. (29)
Finally, define the function P3 : R>o = R>( as
1 l
where
- 1213, 4h3,  _, [0%h
PO = maX{ I,m 5 B(G*)Amln W(Q*) . (31)

We have the following result.

Proposition 2. Let A\, A\ps be two positive real numbers
satisfying A, < Apr. For each A := (A1, A2) € [Am, Anr] X
[Ams Aar], the equilibrium point of the system (21) (6,®) =
(6.,0) is asymptotically stable. Furthermore, if the func-
tion h is radially unbounded, then the equilibrium point
(0,@) = (0.,0) is globally asymptotically stable. Moreover,
the function V) : R? x R® — R>( defined as

V(O — 0., @) := Vo(0,0) + P3(Vi(0 — 0., 0))
is a strict Lyapunov function for the system (21).

(32)

The proof of Proposition 2 is based on Lyapunov’s direct
method. The complete proof can be found in Wang et al.
(2025).

Next, we use the strict Lyapunov function V), for the frozen
dynamics to analyze the full dynamics (19). First, noting
that r(6,) := I;'sj + I 'cj is bounded uniformly in its
initial conditions, i.e. T(Gl) € [I71, 171, let us substitute
the solution 6 (t) of (19) into r(#;) and denote 7(t) :=

7(01(t)). Then, 7(t) = (I7'—171)sin(20;(t))0y(t) is locally

Lipschitz due to the fact that the system (19) is smooth
and following Gronwall’s inequality. Consequently, #(t) is
also bounded. With a slight abuse of notation, defining
A= KPI;T, Xo(t) := K37 (t), and A(t) := diag{A1, Aa(t)},
we rewrite the averaged system (19) as

0=J0)w (33a)

L M(é)h(é)} (33b)

Io+ C(@)o + Do=J(6)"At) 550

and consider (33) as a slowly time-varying system with
the slowly varing parameter Ay because 7(t) is bounded
and ks can be chosen arbitrarily small in Aa(t) = k37(t).
Now, let us consider the Lyapunov function candidate V)
and calculate its total derivative along trajectories of (33),
which yields

AV .
V,\|(21) + Dy 2 0(1).

Note that in (34), VA|(21) is negative definite with respect

Val@s) = (34)

o (0 — 0.,@). Moreover, A2(t) can be made arbitrarily
small by choosing a sufficiently small control parameter
ks.

Proposition 3. Consider the system (33) and its equilib-
rium point (6,&0) = (0.,0). Assume that k1 > 0. Then,
there exists a positive constant k3 > 0 such that for
all ky € (0, k2], the equilibrium point (6,&0) = (0.,0) is
uniformly asymptotically stable.

The proof of Proposition 3 can be found in Wang et al.
(2025).

Finally, we can state the following consequence of Propo-
sitions 1 and 3, which is our main result.

Proposition 4. Consider the Euler-Lagrangian system (4)
with the control law (11). Suppose that the objective func-
tion h satisfies Assumptions 1-3. Then, there exists g9 > 0
such that for every € € (0,¢] and every ky > 0, there exists
ko > 0 such that for all ky € (0, ko], the equlhbrlum point
of the closed-loop system (12) (6,w) = (6«,0) is locally
practically uniformly asymptotically stable in the variables
of (16).

4. SIMULATION RESULTS

As an example, we consider the antenna system (4) with
an antenna panel of dimensions: length = 0.6 m, width
= 0.3 m, and height = 0.1 m. The mass of the antenna
panel is 10 kg. By calculation, the moments of inertia
are determined as I, = 0.0833, I, = 0.3083, and I, =
0.15. The damping coeflicients are given by d, = 0.1,
dy, = 0.1, and d, = 0.1. All parameters are given in SI
units. Three initial postures of the antenna are randomly
generated as Ou1ue(0) = [—0.3849, —0.7422] T, Qredﬁp =
[1.9775,0.7854] T, and Oyenow (0) = [ 0.4916, 2. 6121 All
initial angular velocities are assumed to be zero.

In the simulations, we assume that the unknown cost
function to be optimized is given by h(6) := 1 (6, —614)* +
%(92—92(1)2—1—0.2, where (014,02q4) = (5, %) We choose the
input dither signals as wu;(t) := cos(t) and us(t) := sin(¢).
The control parameters are set to € = 0.01, k; = 0.2, and
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Fig. 2. Paths of the attitude of the closed-loop antenna
system on S?, where (e1, e, e3) denotes the standard
basis for R3. The red dot in the figure represents
the desired posture, where the function h attains its
minimum value at the point.

1F

of \>/*

01 [rad]

05 [rad]

t [sec]

Fig. 3. Error trajectories of the antenna pointing system.

ko = 0.1. The tracking errors are defined as 0. := 6y — 014
and 928 = 62 — 92d~

The simulation results are presented in Figs. 2-3. Figure
2 illustrates the three paths of the antenna system’s
attitude under the extremum-seeking controller. The red
dot in the figure represents the desired posture (614, 624),
where the function h attains its minimum value. The
figure shows that the antenna’s posture converges to
the desired position in all three simulations. Figure 3
displays the error trajectories of the closed-loop antenna
pointing system, demonstrating that the tracking errors
converge to a small neighborhood around the origin in all
three simulations. These simulation results indicate that,
although Proposition 4 asserts local practical uniform
asymptotic stability, the domain of attraction may not
necessarily be small.

5. CONCLUSION

In this paper, we study the extremum seeking control
problem for a two-degree-of-freedom antenna pointing sys-
tem, assuming that only real-time signal measurements are
available. The reference (desired) attitude of the antenna is
supposed to be unknown. Utilizing the symmetric product

approximation, we propose an extremum seeking control
strategy that enables the antenna to adjust its direction to
maximize the received signal strength autonomously. Our
theoretical analysis demonstrates local practical uniform
asymptotic stability for the closed-loop system. Numeri-
cal simulations further illustrate the effectiveness of our
approach.
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