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Abstract: In this work, we solve the distributed formation control problem for heterogeneous
spatial underactuated vehicles subject to switching topologies. We consider the spatial rigid body
model of vehicles with one translational actuator for propulsion and three rotational actuators. A
finite-time sliding mode observer is designed to estimate the ranges between vehicles based on the
bearing measurements. A generalized Slotine-Li transformation is proposed to define continuous
reference velocity trajectories under switching topologies. Based on the cascade structure, a
distributed formation protocol is presented which guarantees the global asymptotic convergence
for the closed-loop system. Numerical simulations on a group of spatial underactuated vehicles
including quadcopters and underwater vehicles are presented.
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1. INTRODUCTION

The cooperative control problem for multiple vehicles has
received great attention in the past two decades. The
advantages of multi-vehicle systems over single vehicles
include higher efficiency, robustness, and flexibility (Ren
and Beard, 2008). Numerous cooperative control strategies
have been proposed in the literature for autonomous
vehicles modeled by single-integrator dynamics (Olfati-
Saber and Murray, 2004; Ren and Beard, 2008), double-
integrator dynamics (Ren, 2008), and fully-actuated Euler-
Lagrangian (EL) systems (Mei et al., 2011).

Most of the vehicles in practice are underactuated. That
is, the vehicle has fewer number of independent actuators
than its degrees of freedom (DOF). The approaches de-
veloped for integrator dynamics and for fully-actuated EL
systems cannot be directly applied to underactuated vehi-
cle networks. Furthermore, a multi-vehicle system usually
contains different types of vehicles. It is more practical if
a group of vehicles can cooperate with each other regard-
less of the structures of their dynamic models. However,
there has not been much effort to develop cooperative
control approaches that can be applied to heterogeneous
underactuated multi-agent systems in the literature. More-
over, an important theme in multi-agent control systems
is decentralization, namely, distributed algorithms, where
each agent senses the relative configuration variables of
its neighbors with respect to its local coordinate system
(Oh et al., 2015). For distributed controllers, cameras
and inertial measurement units (IMUs) are usually the
preferred onboard sensors compared to LiDARs due to
lower weight and cost. These sensors can measure bearing
angles, postures, velocities and accelerations. Hence, the
‹ This research was supported in part by the U.S. Office of Naval
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ranges or relative positions need to be estimated. Another
requirement for distributed cooperative control of multi-
agent systems is communication (Ren and Beard, 2008).
Switching communication topologies and communication
delays are common in a communication network, and thus,
they should be considered when designing a controller.

In Zhang et al. (2021), the formation–containment con-
trol problem was considered for heterogeneous underac-
tuated autonomous underwater vehicles (AUVs) in three-
dimensional space based on a simplified 5-DOF model. In
Mu et al. (2017); Mu and Shi (2018), an integral sliding
mode control law and a linear quadratic regulation (LQR)
consensus protocol were proposed for heterogeneous multi-
vehicle systems consisting of quadrotors and wheeled mo-
bile robots based on the linearized models. Recently, in
Wang and Ahn (2021), a coordinated trajectory track-
ing controller was proposed for the marine aerial-surface
heterogeneous system composed by a quadrotor and a
(fully-actuated) surface vehicle based on cascaded system
theory and Lyapunov analysis. Nevertheless, in the above
mentioned works, the vehicle models in the heterogeneous
networks are either simplified, linearized, or partially as-
sumed to be fully-actuated.

In this work, we solve the distributed formation control
problem for a class of heterogeneous spatial underactuated
vehicle networks with directed communication graphs.
We consider generic spatial vehicle model with two de-
grees of underactuation, which includes underwater and
aerial vehicles with one translational actuator and three
rotational actuators. Based on the cascaded structure,
the formation controller guarantees the global asymptotic
convergence for the closed-loop system. We prove that
switching topologies do not matter if the communication
graphs contains a directed spanning tree. The proposed
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distributed formation protocol is presented which guarantees the global asymptotic convergence
for the closed-loop system. Numerical simulations on a group of spatial underactuated vehicles
including quadcopters and underwater vehicles are presented.

Keywords: Formation control, spatial underactuated vehicles, heterogeneous networks.

1. INTRODUCTION

The cooperative control problem for multiple vehicles has
received great attention in the past two decades. The
advantages of multi-vehicle systems over single vehicles
include higher efficiency, robustness, and flexibility (Ren
and Beard, 2008). Numerous cooperative control strategies
have been proposed in the literature for autonomous
vehicles modeled by single-integrator dynamics (Olfati-
Saber and Murray, 2004; Ren and Beard, 2008), double-
integrator dynamics (Ren, 2008), and fully-actuated Euler-
Lagrangian (EL) systems (Mei et al., 2011).

Most of the vehicles in practice are underactuated. That
is, the vehicle has fewer number of independent actuators
than its degrees of freedom (DOF). The approaches de-
veloped for integrator dynamics and for fully-actuated EL
systems cannot be directly applied to underactuated vehi-
cle networks. Furthermore, a multi-vehicle system usually
contains different types of vehicles. It is more practical if
a group of vehicles can cooperate with each other regard-
less of the structures of their dynamic models. However,
there has not been much effort to develop cooperative
control approaches that can be applied to heterogeneous
underactuated multi-agent systems in the literature. More-
over, an important theme in multi-agent control systems
is decentralization, namely, distributed algorithms, where
each agent senses the relative configuration variables of
its neighbors with respect to its local coordinate system
(Oh et al., 2015). For distributed controllers, cameras
and inertial measurement units (IMUs) are usually the
preferred onboard sensors compared to LiDARs due to
lower weight and cost. These sensors can measure bearing
angles, postures, velocities and accelerations. Hence, the
‹ This research was supported in part by the U.S. Office of Naval
Research under Grant N00014-19-1-2255.

ranges or relative positions need to be estimated. Another
requirement for distributed cooperative control of multi-
agent systems is communication (Ren and Beard, 2008).
Switching communication topologies and communication
delays are common in a communication network, and thus,
they should be considered when designing a controller.

In Zhang et al. (2021), the formation–containment con-
trol problem was considered for heterogeneous underac-
tuated autonomous underwater vehicles (AUVs) in three-
dimensional space based on a simplified 5-DOF model. In
Mu et al. (2017); Mu and Shi (2018), an integral sliding
mode control law and a linear quadratic regulation (LQR)
consensus protocol were proposed for heterogeneous multi-
vehicle systems consisting of quadrotors and wheeled mo-
bile robots based on the linearized models. Recently, in
Wang and Ahn (2021), a coordinated trajectory track-
ing controller was proposed for the marine aerial-surface
heterogeneous system composed by a quadrotor and a
(fully-actuated) surface vehicle based on cascaded system
theory and Lyapunov analysis. Nevertheless, in the above
mentioned works, the vehicle models in the heterogeneous
networks are either simplified, linearized, or partially as-
sumed to be fully-actuated.

In this work, we solve the distributed formation control
problem for a class of heterogeneous spatial underactuated
vehicle networks with directed communication graphs.
We consider generic spatial vehicle model with two de-
grees of underactuation, which includes underwater and
aerial vehicles with one translational actuator and three
rotational actuators. Based on the cascaded structure,
the formation controller guarantees the global asymptotic
convergence for the closed-loop system. We prove that
switching topologies do not matter if the communication
graphs contains a directed spanning tree. The proposed
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control protocol requires the bearing angle information
of the neighbor vehicles, instead of requiring the relative
positions. Using the distributed sliding mode observers,
the ranges between the vehicle and its neighbors are esti-
mated in finite time. The proposed distributed control law
requires only neighbor-to-neighbor information exchange,
and all the measurements are based on onboard sensors.

Notations. Let Rě0 be the set of all non-negative real
numbers; Zě0 the set of all non-negative integers; In P
Rnˆn the identity matrix; Sn the n-sphere, i.e., Sn “ tx P
Rn`1 : |x| “ 1u; s the differential operator, i.e., s “ d

dt r¨s.
We use the abbreviation sp¨q “ sinp¨q, cp¨q “ cosp¨q, and
tp¨q “ tanp¨q. Given a “ ra1, a2, a3sJ P R3, we define the
operator p¨qˆ as

aˆ “
«

0 ´a3 a2
a3 0 ´a1

´a2 a1 0

ff

.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Model of spatial underactuated vehicles

Consider a network of N heterogeneous spatial underactu-
ated vehicles, where the agents are numbered i “ 1, . . . , N
with 1 representing the group leader and 2, . . . ,N rep-
resenting the followers. Each vehicle is modeled as a 6-
DOF rigid body moving in three-dimensional Euclidean
space. Let tIu denote an earth-fixed inertial frame, and
tBiu the body-fixed frame attached to vehicle i, where the
origin is located at the center of mass of the vehicle, as
shown in Fig. 1. The position of vehicle i in the earth-
fixed frame tIu is represented by ξi “ rxi, yi, zisJ, and the
attitude is represented by the Euler angles ηi “ rϕi, θi, ψisJ

of tBiu relative to tIu, where ϕi, θi, ψi represent the roll,
pitch, and yaw angles, respectively. Let vi “ rvxi, vyi, vzisJ

and ωi “ rωxi, ωyi, ωzisJ denote the linear and angular
velocities of vehicle i in its body-fixed frame, respectively.
The kinematics of vehicle i is described by

„

9ξi
9ηi

ȷ

“
„

Rpηiq 0
0 T pηiq

ȷ „

vi
ωi

ȷ

(1)

where Rp¨q is the rotation matrix given by

Rpηq “
«

cθcψ sϕsθcψ ´ cϕsψ cϕsθcψ ` sϕsψ
cθsψ sϕsθsψ ` cϕcψ cϕsθsψ ´ sϕcψ
´sθ sϕcθ cϕcθ

ff

,

and the matrix T p¨q is given by

T pηq “

»

—

–

1 sϕtθ cϕtθ
0 cϕ ´sϕ

0
sϕ
cθ

cϕ
cθ

fi

ffi

fl

.

Note that the matrix T pηq becomes singular when θ “
˘π{2, and thus, we restrict the use of Euler angles to
|ϕi| ă π{2 and |θi| ă π{2 to avoid aggressive maneuvers
and singularity (Fetzer et al., 2021).

We consider the spatial vehicle model with two degrees
of underactuation. More precisely, we assume that each
vehicle has only one control thrust (force) and three
control torques. The dynamic EL model of vehicle i can
be written as

mi 9vi ` ωi ˆ pmiviq ` Dvivi “ Fi ` RpηiqJGi,

Ii 9ωi ` ωi ˆ pIiωiq ` Dωiωi “ τi,
(2)

Fig. 1. Illustration of the leader-follower formation of het-
erogeneous spatial underactuated vehicle networks.

where mi is the total mass of the vehicle; Ii P R3ˆ3 is
the diagonal inertia matrix; Dvi, Dωi P R3ˆ3 are constant,
positive semi-definite damping matrices; Fi is the control
thrust force; Gi “ r0, 0, GzisJ is the total force of gravity
and the buoyancy (if exists); τi “ rτϕi, τθi, τψisJ is the
control torque. Due to the underactuation, the vehicle
model only has one control thrust, and without any loss
of generality, we assume that the control thrust is in
the direction of one of the three body-fixed axes, i.e.,
Fi “ rFxi, 0, 0sJ, Fi “ r0, Fyi, 0sJ, or Fi “ r0, 0, FzisJ.
It should be noted that the full nonlinear vehicle model
(1)-(2) can represent a wide class of spatial underactuated
vehicles including AUVs (Fi “ rFxi, 0, 0sJ) and quadrotors
(Fi “ r0, 0, FzisJ) (Fetzer et al., 2021).

Taking time derivative of (1), substituting (2), and using

the properties that RpηiqJ “ Rpηiq´1, 9Rpηiq “ Rpηiqpωiqˆ,
and pωiqˆvi “ ωi ˆ vi, we obtain the equations of motion
in the earth-fixed frame:

:ξi “ Rpηiqui ` Gi

mi
´ Dξipηiq 9ξi, (3)

:ηi “ τ̃i, (4)

where Dξipηiq “ p1{miqRpηiqDviRpηiqJ; ui “ Fi{mi and

τ̃i “ 9T pηiqωi ´ T pηiqI´1
i rωi ˆ pIiωiq ` Dωiωi ´ τis are the

new control inputs. Note that ui “ ruxi, 0, 0sJ, r0, uyi, 0sJ,
or r0, 0, uzisJ according to the specific configuration of the
thrust actuator, where up¨qi “ Fp¨qi{mi.

2.2 Notions from graph theory

The information exchange among the N vehicles is mod-
eled as a directed graph Gptq “ pV, Eptq,Aptqq, where
V “ t1, . . . ,Nu is the vertex set; Eptq Ď V ˆ V is the edge
set; and Aptq P RNˆN is the weighted adjacency matrix.
The set of neighboring nodes is denoted by Niptq “ tj P
V : pi, jq P Etu, where pi, jq represents that node i obtains
information from node j via communication. The weighted
adjacency matrix Aptq “ raijptqs is defined as aijptq ą 0
if j P Niptq and aijptq “ 0 otherwise. We assume that the
graph Gptq has no self-loop or loop for each t ě 0.
Assumption 1. (i) Aptq is is piecewise continuous for all
t ě 0; (ii) each nonzero entry aijptq is bounded, i.e., there
exist positive constants a, ā such that a ă aijptq ă ā; (iii)
Let t0 “ 0 and let t1, t2, . . . be the switching times for Aptq.
The directed switching graph Gptq has a directed spanning
tree across each interval rti, ti`1q, @i P Zě0.

2.3 Problem statement

The objective of formation control is to design a dis-
tributed controller for each follower agent such that it
coordinates its motion relative to its neighbors, and the
network asymptotically converges to a predefined geomet-
ric pattern. The desired geometric pattern of the vehicle
network in terms of spatial positions is defined by a set of
constant position offset vectors tdij “ rdxij, d

y
ij, d

z
ijsJ P R3 :

i, j P V, i ‰ ju. To be more specific, under Assumption 1,
we will design a controller for each follower (3)-(4) without
global position measurements or relative range measure-
ments such that: (i) the state trajectories of the closed-
loop system are bounded for all t ě 0; (ii) all the vehicles
in the network can maintain a prescribed formation in the
sense that for all i P V,

lim
tÑ`8

ÿ

jPNiptq
|ξiptq ´ ξjptq ´ dij| “ 0. (5)

Lemma 1 (Ren and Beard (2008)). Consider the single-
integrator dynamics 9xi “ ui, where xi P Rn, i “ 1, . . . , N
with the network communication graph satisfying Assump-
tion 1. Then, under the control law

ui “ 1

Ξiptq
ÿ

jPNiptq
aijptq r 9xj ´ αpxi ´ xjqs , (6)

where Ξiptq “
ř

jPNiptq aijptq, and α ą 0 is a constant, the

consensus tracking problem is solved.
Lemma 2 (Sastry and Bodson (1989)). For continuous
differentiable signals x, y : Rě0 Ñ R, the following holds
for any α ą 0

α

s ` α
rxys “ y

α

s ` α
rxs ´ 1

s ` α

„

9y
α

s ` α
rxs

ȷ

.

3. RANGE OBSERVER DESIGN

In this section, we present a distributed finite-time sliding
mode observer for range estimation among spatial vehicles.

Consider a pair of agents pi, jq, where agent j is the leader
and agent i is the follower. In the body-fixed frame tBiu,
the relative position vector of agent j is denoted by

ζij “ RpηiqJpξj ´ ξiq. (7)

We assume that the measurable signal is the bearing angle
of vehicle j in the body-fixed frame tBiu. That is, we
measure the projection of ζij on the unit sphere centered
at the origin of tBiu, i.e.,

σij “ ζij
|ζij|

P S2. (8)

The bearing angle σij is well defined for all |ζij| ‰ 0.
The problem is to estimate the range rij “ |ζij| based
on the bearing angle σij, the attitude, and the velocity
measurements.

To start with, we write the error dynamics in the body-
fixed frame tBiu. Note that

9hkkkkj

|ζij|2 “ 2|ζij|
9hkkkkj

|ζij| “
9hkkkkj

ζJ
ij ζij “ 2ζJ

ij
9ζij “ 2rij 9rij,

and 9rij “ σJ
ij

9ζij. Taking time derivative of (7), and

substituting (1), we obtain

9rij “ σJ
ij

“

RpηiqJRpηjqvj ´ vi
‰

“ σJ
ijwij, (9)

where wij “ RpηiqJRpηjqvj ´ vi, and we used the fact
that the matrix pωiqˆ is skew-symmetric. Taking time
derivative of (8), we have

9σij “ ´pωiqˆσij ` 1

rij

`

I3 ´ σijσ
J
ij

˘

wij. (10)

Multiply rij and apply the stable filter α{ps`αq with α ą 0
to both sides of (10) yields

α

s ` α
rrij 9σijs “ α

s ` α

“

´rijpωiqˆσij `
`

I3 ´ σijσ
J
ij

˘

wij

‰

.

(11)
Applying Lemma 2, the left-hand side of (11) becomes

αG2rrij 9σijs “ rijG1rσijs ´ G2

“

σJ
ijwijG1rσijs

‰

. (12)

where G1psq “ αs{ps ` αq and G2psq “ 1{ps ` αq. Sub-
stituting (12) into (11) and applying Lemma 2 again, we
obtain

rijΦij “ G2

“

σJ
ijwijΦij

‰

` αG2

“

pI3 ´ σijσ
J
ij qwij

‰

, (13)

where Φij “ G1rσijs ` αG2 rpωiqˆσijs is a continuous
measurable signal.
Proposition 1. Consider the dynamics (9)-(10) with
input wij. The sliding mode observer

9̂rij “ σJ
ijwij ´ γ sign

␣

ΦJ
ij

`

Φijr̂ij ´ G2

“

σJ
ijwijΦij

‰

´αG2

“

pI3 ´ σijσ
J
ij qwij

‰˘(

(14)

ζ̂ij “ σijr̂ij (15)

with γ ą 0 provides a globally finite-time convergent
estimate to the relative position error ζij, i.e., there exists

Tr ą 0 such that ζ̂ijptq “ ζijptq for all t ě Tr, if the signal
ΦJ

ij is persistently exciting (PE), i.e., there exist µ, T ą 0
such that

ż t`T

t

ΦijpsqJΦijpsq ě µ, @t ě 0. (16)

Proof. Define the estimation error r̃ij “ r̂ij ´ rij. Substi-
tuting (13) into (14), the observation error dynamics are
given by

9̃rij “ ´γ sign
`

ΦJ
ijΦij

˘

sign pr̃ijq . (17)

Consider the Lyapunov candidate V pr̃ijq “ |r̃ij|, where its
derivative is calculated as

9V “
"

´γ sign
`

ΦJ
ijΦij

˘

, r̃ij ‰ 0
0 , r̃ij “ 0.

(18)

For each r̃ijp0q ‰ 0, we have, along trajectories, 9V pr̃ijptqq “
´γ, if ΦijptqJΦijptq ą 0, and 9V pr̃ijptqq “ 0, if ΦijptqJΦijptq “
0. Due to the PE condition (16) and the continuity of
Φijptq, for each time interval rt, t ` T s, the measure of the
set ts P rt, t`T s : ΦijpsqJΦijpsq ě µ{T u must be (strictly)
larger than zero. Define lra,bs as the measure of the set

ts P ra, bs : ΦijpsqJΦijpsq ą 0u. We have, for all t ě 0,

lrt,t`T s “ measts P rt, t ` T s : ΦijpsqJΦijpsq ą 0u
ą measts P rt, t ` T s : ΦijpsqJΦijpsq ě µ{T u ą 0.

Integrating both sides of (18) along trajectories yields
V pr̃ijptqq “ V pr̃ijp0qq ´ γlr0,tst. Therefore, for each
r̃ijp0q ‰ 0, there exists Tr “ V pr̃ijp0qq{pγlr0,tsq such that
V pr̃ijpTrqq “ 0, which proves the global and finite-time
convergence.
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2.3 Problem statement

The objective of formation control is to design a dis-
tributed controller for each follower agent such that it
coordinates its motion relative to its neighbors, and the
network asymptotically converges to a predefined geomet-
ric pattern. The desired geometric pattern of the vehicle
network in terms of spatial positions is defined by a set of
constant position offset vectors tdij “ rdxij, d

y
ij, d

z
ijsJ P R3 :

i, j P V, i ‰ ju. To be more specific, under Assumption 1,
we will design a controller for each follower (3)-(4) without
global position measurements or relative range measure-
ments such that: (i) the state trajectories of the closed-
loop system are bounded for all t ě 0; (ii) all the vehicles
in the network can maintain a prescribed formation in the
sense that for all i P V,

lim
tÑ`8

ÿ

jPNiptq
|ξiptq ´ ξjptq ´ dij| “ 0. (5)

Lemma 1 (Ren and Beard (2008)). Consider the single-
integrator dynamics 9xi “ ui, where xi P Rn, i “ 1, . . . , N
with the network communication graph satisfying Assump-
tion 1. Then, under the control law

ui “ 1

Ξiptq
ÿ

jPNiptq
aijptq r 9xj ´ αpxi ´ xjqs , (6)

where Ξiptq “
ř

jPNiptq aijptq, and α ą 0 is a constant, the

consensus tracking problem is solved.
Lemma 2 (Sastry and Bodson (1989)). For continuous
differentiable signals x, y : Rě0 Ñ R, the following holds
for any α ą 0

α

s ` α
rxys “ y

α

s ` α
rxs ´ 1

s ` α

„

9y
α

s ` α
rxs

ȷ

.

3. RANGE OBSERVER DESIGN

In this section, we present a distributed finite-time sliding
mode observer for range estimation among spatial vehicles.

Consider a pair of agents pi, jq, where agent j is the leader
and agent i is the follower. In the body-fixed frame tBiu,
the relative position vector of agent j is denoted by

ζij “ RpηiqJpξj ´ ξiq. (7)

We assume that the measurable signal is the bearing angle
of vehicle j in the body-fixed frame tBiu. That is, we
measure the projection of ζij on the unit sphere centered
at the origin of tBiu, i.e.,

σij “ ζij
|ζij|

P S2. (8)

The bearing angle σij is well defined for all |ζij| ‰ 0.
The problem is to estimate the range rij “ |ζij| based
on the bearing angle σij, the attitude, and the velocity
measurements.

To start with, we write the error dynamics in the body-
fixed frame tBiu. Note that

9hkkkkj

|ζij|2 “ 2|ζij|
9hkkkkj

|ζij| “
9hkkkkj

ζJ
ij ζij “ 2ζJ

ij
9ζij “ 2rij 9rij,

and 9rij “ σJ
ij

9ζij. Taking time derivative of (7), and

substituting (1), we obtain

9rij “ σJ
ij

“

RpηiqJRpηjqvj ´ vi
‰

“ σJ
ijwij, (9)

where wij “ RpηiqJRpηjqvj ´ vi, and we used the fact
that the matrix pωiqˆ is skew-symmetric. Taking time
derivative of (8), we have

9σij “ ´pωiqˆσij ` 1

rij

`

I3 ´ σijσ
J
ij

˘

wij. (10)

Multiply rij and apply the stable filter α{ps`αq with α ą 0
to both sides of (10) yields

α

s ` α
rrij 9σijs “ α

s ` α

“

´rijpωiqˆσij `
`

I3 ´ σijσ
J
ij

˘

wij

‰

.

(11)
Applying Lemma 2, the left-hand side of (11) becomes

αG2rrij 9σijs “ rijG1rσijs ´ G2

“

σJ
ijwijG1rσijs

‰

. (12)

where G1psq “ αs{ps ` αq and G2psq “ 1{ps ` αq. Sub-
stituting (12) into (11) and applying Lemma 2 again, we
obtain

rijΦij “ G2

“

σJ
ijwijΦij

‰

` αG2

“

pI3 ´ σijσ
J
ij qwij

‰

, (13)

where Φij “ G1rσijs ` αG2 rpωiqˆσijs is a continuous
measurable signal.
Proposition 1. Consider the dynamics (9)-(10) with
input wij. The sliding mode observer

9̂rij “ σJ
ijwij ´ γ sign

␣

ΦJ
ij

`

Φijr̂ij ´ G2

“

σJ
ijwijΦij

‰

´αG2

“

pI3 ´ σijσ
J
ij qwij

‰˘(

(14)

ζ̂ij “ σijr̂ij (15)

with γ ą 0 provides a globally finite-time convergent
estimate to the relative position error ζij, i.e., there exists

Tr ą 0 such that ζ̂ijptq “ ζijptq for all t ě Tr, if the signal
ΦJ

ij is persistently exciting (PE), i.e., there exist µ, T ą 0
such that

ż t`T

t

ΦijpsqJΦijpsq ě µ, @t ě 0. (16)

Proof. Define the estimation error r̃ij “ r̂ij ´ rij. Substi-
tuting (13) into (14), the observation error dynamics are
given by

9̃rij “ ´γ sign
`

ΦJ
ijΦij

˘

sign pr̃ijq . (17)

Consider the Lyapunov candidate V pr̃ijq “ |r̃ij|, where its
derivative is calculated as

9V “
"

´γ sign
`

ΦJ
ijΦij

˘

, r̃ij ‰ 0
0 , r̃ij “ 0.

(18)

For each r̃ijp0q ‰ 0, we have, along trajectories, 9V pr̃ijptqq “
´γ, if ΦijptqJΦijptq ą 0, and 9V pr̃ijptqq “ 0, if ΦijptqJΦijptq “
0. Due to the PE condition (16) and the continuity of
Φijptq, for each time interval rt, t ` T s, the measure of the
set ts P rt, t`T s : ΦijpsqJΦijpsq ě µ{T u must be (strictly)
larger than zero. Define lra,bs as the measure of the set

ts P ra, bs : ΦijpsqJΦijpsq ą 0u. We have, for all t ě 0,

lrt,t`T s “ measts P rt, t ` T s : ΦijpsqJΦijpsq ą 0u
ą measts P rt, t ` T s : ΦijpsqJΦijpsq ě µ{T u ą 0.

Integrating both sides of (18) along trajectories yields
V pr̃ijptqq “ V pr̃ijp0qq ´ γlr0,tst. Therefore, for each
r̃ijp0q ‰ 0, there exists Tr “ V pr̃ijp0qq{pγlr0,tsq such that
V pr̃ijpTrqq “ 0, which proves the global and finite-time
convergence.
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4. FORMATION CONTROL DEVELOPMENT

Considering the formation objective (5), in addition to
control the three position variables, one attitude variable
also can be independently controlled. The other two at-
titude variables must be determined from the constraints
imposed due to underactuation. The vehicle model (3)-(4)
has three possible structural heterogeneities, which corre-
spond to the three possible configurations of the thrust
actuator. Introducing a virtual input νi “ rνxi, νyi, νzisJ P
R3, we have

:ξi “ νi ` gipηi, ui, 9ξi, νiq, (19)

where gipηi, ui, 9ξi, νiq “ Rpηiqui ` Gi{mi ´ Dξipηiq 9ξi ´ νi.
The desired attitude signal ηidptq “ rϕidptq, θidptq, ψidptqsJ

and uiptq are selected such that gipηidptq, uiptq, 9ξi, νiq “ 0,
for all t ě 0. Specifically, denoting µi “ rµxi, µyi, µzisJ “
Dξipηiq 9ξi ` νi ´ Gi{mi, the desired trajectories ηidptq and
the thrust uiptq are selected such that Rpηidptqquiptq “
µiptq. For the three cases, we propose the attitude resolu-
tion as follows:

Case 1. (ui “ ruxi, 0, 0sJ; ϕi is independently controlled.)
Given ϕidptq “ ϕiptq and νiptq, the thrust and desired
attitude signals are selected as

uxi “
b

µ2
xi ` µ2

yi ` µ2
zi, (20)

θid “ arcsin
`

´u´1
xi µzi

˘

, (21)

ψid “ arctan
`

µ´1
xi µyi

˘

. (22)

Case 2. (ui “ r0, uyi, 0sJ; θi is independently controlled.)
Given θidptq “ θiptq and νiptq, the thrust and desired
attitude signals are selected as

uyi “
b

µ2
xi ` µ2

yi ` µ2
zi, (23)

ϕid “ arcsin
”

µziu
´1
yi secpθidq

ı

, (24)

ψid “ arccos ruyi pµxi sinpϕidq sinpθidq
`µyi cospϕidqq pµ2

xi ` µ2
yiq´1

‰

. (25)

Case 3. (ui “ r0, 0, uzisJ; ψi is independently controlled.)
Given ψidptq “ ψiptq and νiptq, the thrust and desired
attitude signals are selected as

uzi “
b

µ2
xi ` µ2

yi ` µ2
zi, (26)

ϕid “ arcsin
“

u´1
zi pµxi sinpψidq ´ µyi cospψidqq

‰

, (27)

θid “ arctan
“

µ´1
zi pµxi cospψidq ` µyi sinpψidqq

‰

. (28)

In Slotine and Li (1987), an adaptive scheme was pro-
posed for trajectory tracking control of fully-actuated La-
grangian systems with unknown parameters. The main
idea of the Slotine-Li controller is to introduce a virtual
“reference velocity”, and then, a PD feedback is employed
to steer the velocity variable to the “reference velocity”.
The Slotine-Li controller can be used to solve the con-
sensus tracking problem for multi-agent systems. Consider
N double-integrator systems, i.e., :xi “ ui with xi P Rn,
i “ 1, . . . , N . Define the reference velocity zi, the sliding
variable si, and the control input ui as

zi “ 1
ř

jPNi
aij

ÿ

jPNi

aij r 9xj ´ pxi ´ xjqs ,

si “ 9xi ´ zi,

ui “ 9zi ´ kisi,

(29)

where ki ą 0 is a constant control gain. The closed-loop
dynamics on the sliding manifold tsi ” 0u are given by

9xi “ 1
ř

jPNi
aij

ÿ

jPNi

aij r 9xj ´ pxi ´ xjqs . (30)

It follows from Lemma 1 that the consensus tracking
problem is solved if the communication topology contains
a directed spanning tree.

The algorithm (29) has a fatal flaw when the topology
is dynamically changing. For instance, under switching
topologies, aijptq and the reference velocity ziptq are no
longer continuous. Thus, the control law ui “ 9zi´kisi can-
not be implemented because it involves the time derivative
of a discontinuous term. To solve this problem, instead of
defining the reference velocity ziptq as in (29), we define
ziptq by integration. Consider the following algorithm

9zi “ 1

Ξiptq
ÿ

jPNiptq
aijptq r:xj ´ pα ` 1qp 9xi ´ 9xjq ´ αpxi ´ xjqs

(31)
with si and ui defined in (29), and α ą 0. It should be
pointed that the reference velocity ziptq is differentiable
due to the integration action, and thus, the control law
ui “ 9zi ´ kisi is well defined. Consider the closed-loop
dynamics on the manifold t 9si ” 0u, which are given by

9χi “ 1

Ξiptq
ÿ

jPNi

aijptq r 9χj ´ pχi ´ χjqs , (32)

where χi “ 9xi `αxi. It follows from Lemma 1 that χiptq ´
χjptq Ñ 0 as t Ñ `8, for all i, j P V. Therefore, we have

p 9xi ´ 9xjq “ ´αpxi ´ xjq ` ϵt, @i, j P V, (33)

where ϵt Ñ 0, proving xi´xj Ñ 0 as t Ñ 8. It is clear that,
if the communication topology is fixed, i.e., aijptq ” aij for
all i, j P V, then the control law (31) reduces to the Slotine-
Li controller (29) when α “ 0.

This idea can be generalized to the m-th order integrator-
chain model. The generalized Slotine-Li controller is given
by

z
pm´1q
i “ 1

Ξiptq
ÿ

jPNiptq
aijptq

”

x
pmq
j ´ p1 ` αm´1q∆pm´1q

ij

´ pαm´1 ` αm´2q∆pm´2q
ij ´ ¨ ¨ ¨ ´ pα2 ` α1q 9∆ij ´ α1∆ij

ı

si “ 9xi ´ zi,

ui “ z
pm´1q
i ´ k1isi ´ ¨ ¨ ¨ ´ kpm´1qis

pm´2q
i , (34)

where ∆ij “ xi ´ xj; the parameters α1, . . . , αm´1

and k1i, . . . , kpm´1qi are chosen such that the matrix

Apα1, . . . , αm´1q and A
`

k1i, . . . , kpm´1qi
˘

are Hurwitz, re-
spectively. The matrix Ap¨q is defined as

Apk1, . . . , km´1q “

»

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1
´k1 ´k2 ´k3 ¨ ¨ ¨ ´km´1

fi

ffi

ffi

ffi

ffi

fl

.

Theorem 1. Consider the m-th order integrator-chain

model x
pmq
i “ ui, where xi P Rn, i “ 1, . . . , N , and

m,n,N P Zą0. Then, under the generalized Slotine-Li
controller (34), the consensus tracking problem is solved
provided that Assumption 1 holds.

Proof. Noting that the reference velocity ziptq is differen-
tiable up to pm ´ 1q-th order, we have

s
pm´1q
i “ x

pmq
i ´ z

pm´1q
i . (35)

Substituting x
pmq
i “ ui into (35) yields s

pm´1q
i “ ´k1isi ´

¨ ¨ ¨ ´ kpm´1qis
pm´2q
i . The condition A

`

k1i, . . . , kpm´1qi
˘

being Hurwitz implies that
´

si, 9si, . . . , s
pm´1q
i

¯

ptq Ñ 0

exponentially as t Ñ `8. On the other hand, substi-

tuting z
pm´1q
i into (35), and denoting qi “ x

pm´1q
i `

αpm´1qx
pm´2q
i `¨ ¨ ¨`α2 9xi`α1xi, we recover the first-order

consensus algorithm

9qi “ 1

Ξiptq
ÿ

jPNiptq
aijptq r 9qj ´ pqi ´ qjqs ` s

pm´1q
i ptq, (36)

which can be viewed as an exponentially stable lin-
ear system (with respect to the equilibrium manifold
tpx1, . . . , xNq : xi “ xj,@i, j P Vu) with an exponentially

decaying input s
pm´1q
i ptq. It follows from Lemma 1 and

the converging-input converging-state (CICS) property for
stable linear systems that the exponential consensus is
achieved for variable qi. That is, |qiptq ´ qjptq| Ñ 0 ex-
ponentially as t Ñ `8, for all i, j P V. Finally, it follows
from the condition Apα1, . . . , αm´1q being Hurwitz that
|xiptq´xjptq| Ñ 0 exponentially as t Ñ `8, for all i, j P V,
where the consensus tracking problem is solved.

We apply the proposed design to the formation control
problem for heterogeneous spatial underactuated vehicle
networks.

Position control design. We propose the following
observer-based generalized Slotine-Li control law for νi

9z1i “ 1

Ξiptq
ÿ

jPNiptq
aijptqr:ξj ´ pα1 ` 1qp 9ξi ´ 9ξjq.

` α1pRpηiqζ̂ij ` dijqs,
s1i “ 9ξi ´ z1i,

νi “ 9z1i ´ k1is1i, (37)

where α1, k1i ą 0 are the control gains; ζ̂ijptq is the output
of the sliding mode observer (14)-(15).

Attitude control design. It is clear that the attitude
dynamics (4) are decoupled and controlled by three in-
dependent control inputs, i.e., τ̃i “ rτ̃ϕi, τ̃θi, τ̃ψisJ. For
the three cases discussed in Section 4.1, we apply the
generalized Slotine-Li control law to the independently
controlled attitude variable. Specifically, for Case 1, we
propose

9z2i “ 1

Ξiptq
ÿ

jPNiptq
aijptqr :ϕj ´ pα2 ` 1qp 9ϕi ´ 9ϕjq

´ α2pϕi ´ ϕjqs,
s2i “ 9ξi ´ z2i,

τ̃ϕi “ 9z2i ´ k2is2i, (38)

where α2, k2i ą 0 are the control gains. Then, the
thrust uiptq and the other two desired attitude signals
pθidptq, ψidptqq are given by (20)-(22). We choose the slid-
ing mode control for double-integrator pθi, ψiq-subsystems
because of its simplicity and robustness:

τ̃θi “ ´λ1
9̃
θi ´ k3i signps3iq, s3i “ 9̃

θi ` λ1θ̃i, (39)

τ̃ψi “ ´λ2
9̃
ψi ´ k4i signps4iq, s4i “ 9̃

ψi ` λ2ψ̃i, (40)

where θ̃i “ θi ´ θid; ψ̃i “ ψi ´ ψid; and λ1 ą 0,

λ2 ą 0, k3i ą supt|:θidptq|u, and k4i ą supt| :ψidptq|u
are control gains. For Case 2 and Case 3, replace the
independently controlled attitude variable ϕ in (38) by θ
and ψ, respectively; generate thrust and desired attitude
signals using (23)-(25) and (26)-(28), respectively; and
replace pθ, ψq in (39)-(40) by pϕ, ψq and pϕ, θq, respectively.

Theorem 2. Consider the vehicle dynamics (19), (4).
Suppose that Assumption 1 holds. Then, the controller
(37)-(40), together with the finite-time sliding mode ob-
server (14)-(15), solves the formation tracking problem.

Proof. The vehicle dynamics (19), (4) is in the cascaded
structure. First, for the ηi-subsystem, substituting (39)-
(40) into (4), yields s3iptq Ñ 0 and s4iptq Ñ 0 in finite
time. On the sliding manifolds ts3i “ 0u and ts4i “ 0u,
we have θiptq ´ θidptq Ñ 0 and ψiptq ´ ψidptq Ñ 0
exponentially as t Ñ `8. We conclude that |ηiptq ´
ηidptq| Ñ 0 exponentially, and thus, the interconnection

term gipηiptq, uiptq, 9ξiptq, νiptqq Ñ 0 as t Ñ `8. The
same conclusion can be easily obtained for Case 2 and
Case 3. Also note that the controller (38) is exact the
generalized Slotine-Li controller (31). We conclude that
ϕiptq ´ ϕjptq Ñ 0 as t Ñ `8.

Then, it follows from Proposition 1 that, after a fi-

nite time Tr, ζ̂ijptq ” ζijptq ” RpηiqJpξj ´ ξiq. Substi-
tute into (37), which recovers the generalized Slotine-Li

controller structure (31) again. Note that 9s1i “ :ξi ´
9z1i “ ´k1is1i`gipηiptq, uiptq, 9ξiptq, νiptqq, and the last term

gipηiptq, uiptq, 9ξiptq, νiptqq Ñ 0 as t Ñ `8. The CICS
property of linear systems implies that s1iptq Ñ 0. Finally,
it follows from the proof of Theorem 1 that the control
objective (5) is achieved, which completes the proof.

5. NUMERICAL SIMULATION

In this section, we apply the proposed formation control
strategy to a heterogeneous spatial underactuated vehicle
network including one AUV and four quadrotor unmanned
aerial vehicles (UAVs). We number the four quadrotors
from 1 to 4, and the AUV 5. Assume that the desired
formation shape of the group of quadrotors is a horizontal
square. Length of the square sides is 5 m. The desired XY
position of the AUV 5 is the center of the square in the
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Fig. 2. Directed switching topologies.
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Theorem 1. Consider the m-th order integrator-chain

model x
pmq
i “ ui, where xi P Rn, i “ 1, . . . , N , and

m,n,N P Zą0. Then, under the generalized Slotine-Li
controller (34), the consensus tracking problem is solved
provided that Assumption 1 holds.

Proof. Noting that the reference velocity ziptq is differen-
tiable up to pm ´ 1q-th order, we have

s
pm´1q
i “ x

pmq
i ´ z

pm´1q
i . (35)

Substituting x
pmq
i “ ui into (35) yields s

pm´1q
i “ ´k1isi ´

¨ ¨ ¨ ´ kpm´1qis
pm´2q
i . The condition A

`

k1i, . . . , kpm´1qi
˘

being Hurwitz implies that
´

si, 9si, . . . , s
pm´1q
i

¯

ptq Ñ 0

exponentially as t Ñ `8. On the other hand, substi-

tuting z
pm´1q
i into (35), and denoting qi “ x

pm´1q
i `

αpm´1qx
pm´2q
i `¨ ¨ ¨`α2 9xi`α1xi, we recover the first-order

consensus algorithm

9qi “ 1

Ξiptq
ÿ

jPNiptq
aijptq r 9qj ´ pqi ´ qjqs ` s

pm´1q
i ptq, (36)

which can be viewed as an exponentially stable lin-
ear system (with respect to the equilibrium manifold
tpx1, . . . , xNq : xi “ xj,@i, j P Vu) with an exponentially

decaying input s
pm´1q
i ptq. It follows from Lemma 1 and

the converging-input converging-state (CICS) property for
stable linear systems that the exponential consensus is
achieved for variable qi. That is, |qiptq ´ qjptq| Ñ 0 ex-
ponentially as t Ñ `8, for all i, j P V. Finally, it follows
from the condition Apα1, . . . , αm´1q being Hurwitz that
|xiptq´xjptq| Ñ 0 exponentially as t Ñ `8, for all i, j P V,
where the consensus tracking problem is solved.

We apply the proposed design to the formation control
problem for heterogeneous spatial underactuated vehicle
networks.

Position control design. We propose the following
observer-based generalized Slotine-Li control law for νi

9z1i “ 1

Ξiptq
ÿ

jPNiptq
aijptqr:ξj ´ pα1 ` 1qp 9ξi ´ 9ξjq.

` α1pRpηiqζ̂ij ` dijqs,
s1i “ 9ξi ´ z1i,

νi “ 9z1i ´ k1is1i, (37)

where α1, k1i ą 0 are the control gains; ζ̂ijptq is the output
of the sliding mode observer (14)-(15).

Attitude control design. It is clear that the attitude
dynamics (4) are decoupled and controlled by three in-
dependent control inputs, i.e., τ̃i “ rτ̃ϕi, τ̃θi, τ̃ψisJ. For
the three cases discussed in Section 4.1, we apply the
generalized Slotine-Li control law to the independently
controlled attitude variable. Specifically, for Case 1, we
propose

9z2i “ 1

Ξiptq
ÿ

jPNiptq
aijptqr :ϕj ´ pα2 ` 1qp 9ϕi ´ 9ϕjq

´ α2pϕi ´ ϕjqs,
s2i “ 9ξi ´ z2i,

τ̃ϕi “ 9z2i ´ k2is2i, (38)

where α2, k2i ą 0 are the control gains. Then, the
thrust uiptq and the other two desired attitude signals
pθidptq, ψidptqq are given by (20)-(22). We choose the slid-
ing mode control for double-integrator pθi, ψiq-subsystems
because of its simplicity and robustness:

τ̃θi “ ´λ1
9̃
θi ´ k3i signps3iq, s3i “ 9̃

θi ` λ1θ̃i, (39)

τ̃ψi “ ´λ2
9̃
ψi ´ k4i signps4iq, s4i “ 9̃

ψi ` λ2ψ̃i, (40)

where θ̃i “ θi ´ θid; ψ̃i “ ψi ´ ψid; and λ1 ą 0,

λ2 ą 0, k3i ą supt|:θidptq|u, and k4i ą supt| :ψidptq|u
are control gains. For Case 2 and Case 3, replace the
independently controlled attitude variable ϕ in (38) by θ
and ψ, respectively; generate thrust and desired attitude
signals using (23)-(25) and (26)-(28), respectively; and
replace pθ, ψq in (39)-(40) by pϕ, ψq and pϕ, θq, respectively.

Theorem 2. Consider the vehicle dynamics (19), (4).
Suppose that Assumption 1 holds. Then, the controller
(37)-(40), together with the finite-time sliding mode ob-
server (14)-(15), solves the formation tracking problem.

Proof. The vehicle dynamics (19), (4) is in the cascaded
structure. First, for the ηi-subsystem, substituting (39)-
(40) into (4), yields s3iptq Ñ 0 and s4iptq Ñ 0 in finite
time. On the sliding manifolds ts3i “ 0u and ts4i “ 0u,
we have θiptq ´ θidptq Ñ 0 and ψiptq ´ ψidptq Ñ 0
exponentially as t Ñ `8. We conclude that |ηiptq ´
ηidptq| Ñ 0 exponentially, and thus, the interconnection

term gipηiptq, uiptq, 9ξiptq, νiptqq Ñ 0 as t Ñ `8. The
same conclusion can be easily obtained for Case 2 and
Case 3. Also note that the controller (38) is exact the
generalized Slotine-Li controller (31). We conclude that
ϕiptq ´ ϕjptq Ñ 0 as t Ñ `8.

Then, it follows from Proposition 1 that, after a fi-

nite time Tr, ζ̂ijptq ” ζijptq ” RpηiqJpξj ´ ξiq. Substi-
tute into (37), which recovers the generalized Slotine-Li

controller structure (31) again. Note that 9s1i “ :ξi ´
9z1i “ ´k1is1i`gipηiptq, uiptq, 9ξiptq, νiptqq, and the last term

gipηiptq, uiptq, 9ξiptq, νiptqq Ñ 0 as t Ñ `8. The CICS
property of linear systems implies that s1iptq Ñ 0. Finally,
it follows from the proof of Theorem 1 that the control
objective (5) is achieved, which completes the proof.

5. NUMERICAL SIMULATION

In this section, we apply the proposed formation control
strategy to a heterogeneous spatial underactuated vehicle
network including one AUV and four quadrotor unmanned
aerial vehicles (UAVs). We number the four quadrotors
from 1 to 4, and the AUV 5. Assume that the desired
formation shape of the group of quadrotors is a horizontal
square. Length of the square sides is 5 m. The desired XY
position of the AUV 5 is the center of the square in the
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Fig. 3. The trajectories of the five vehicles.
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Fig. 4. The configuration errors of the five vehicles.

formation, and the vertical position is 15 m lower than
the horizontal square. In the simulation, the group leader
is commanded to follow a circle of radius 1 m centered at
p0, 0, 10q and at a constant speed of 1 rad/s. The desired
yaw angle for the leader vehicle is 1 rad. The quadrotor
parameters are selected as: mi “ 1 kg, Dvi “ diagt0, 0, 0u
for i “ 1, . . . ,4. The AUV parameters are selected as:
m5 “ 11.85 kg, Dv5 “ diagt0.85, 3.11, 0.24u. The buoy-
ancy force of the AUV is 114.2 N. All vehicles start
from rest and the initial Euler angles are 0. The directed
communication graph Gptq switches every 5 seconds from
Gp1q to Gp4q, as shown in Fig. 2. The components of the
adjacency matrix are aijptq “ 1 if pj, iq P Eptq. We select
α “ 5 and γ “ 5. The control gains for the four quadrotors
are selected as: k1i “ k2i “ 3, k3i “ k4i “ 20, α1 “ 2,
α2 “ 3, λ1 “ λ2 “ 3. The control gains for the AUV are
selected as: k15 “ 2, k25 “ 1, k35 “ k45 “ 25, α1 “ α2 “ 1,
λ1 “ λ2 “ 5.

Simulation results are illustrated in Figs. 3-5. Figure 3
shows the paths of all five vehicles with the formation
illustrated at t “ 20 s. Figure 4 shows the configuration
errors of the five vehicles in the formation. Figure 5 shows
the Euler angles of the five vehicles in the formation. The
yaw angles of all four quadrotors are in consensus and
converge to 1 rad. The roll angle of the AUV converges to
the desired trajectory assigned by the quadrotors, while
its yaw angle linearly increases as time tends to infinity.

6. CONCLUSIONS

The formation control problem for a team of heteroge-
neous spatial underactuated vehicles subject to switching
topologies has been addressed. A distributed sliding mode
observer is used to estimate ranges between vehicles in
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Fig. 5. Euler angles of the five vehicles in the formation.

finite time. Then, the generalized Slotine-Li controller is
presented to deal with switching topologies. Global asymp-
totic convergence is proved for the closed-loop system
based on cascaded structure of the vehicle systems.
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