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Systems
This paper presents a distributed control approach for time-varying formation of hetero-
geneous planar underactuated vehicle networks without global position measurements.
All vehicles in the network are modeled as generic three degree-of-freedom planar rigid
bodies with two control inputs, and are allowed to have nonidentical dynamics. Feasible
trajectories are generated for each vehicle using the nonholonomic constraints of the
vehicle dynamics. By exploiting the cascaded structure of the planar vehicle model, a
transformation is introduced to define the reduced order error dynamics, and then, a
sliding-mode control law is proposed. Low-level controller for each vehicle is derived
such that it only requires relative position and local motion information of its neighbors
in a given directed communication network. The proposed formation control law guaran-
tees the uniform global asymptotic stability (UGAS) of the closed-loop system subject to
bounded uncertainties and disturbances. The proposed approach can be applied to
underactuated vehicle networks consisting of mobile robots, surface vessels, and planar
aircraft. Simulations are presented to demonstrate the effectiveness of the proposed con-
trol scheme. [DOI: 10.1115/1.4053359]

1 Introduction

1.1 Motivation and Literature Review. Control of planar
underactuated vehicles has been a very active research area due to
its intrinsic nonlinear nature and widely practical applications.
Nonholonomicity and underactuation are two main obstacles in
control design of planar underactuated vehicles. Specific control
approaches have been proposed for nonholonomic mobile robots
[1–3], underactuated surface vessels [4,5], and planar vertical
takeoff and landing (PVTOL) aircraft [6,7] based on the specific
structures of their dynamics. In the authors’ previous work [8], a
trajectory tracking control framework was proposed for generic
planar underactuated vehicles that can be applied to various forms
of planar underactuated vehicles, including wheeled mobile
robots, marine surface vessels, and PVTOL aircraft. The motiva-
tion for this work is to develop a cooperative control algorithm
that can be applied to networks, which include these diverse types
of vehicles. Application examples include networks consisting of
ground vehicles and surface vessels with on-board robotic manip-
ulators cooperatively handling loads in canals and for surveillance
operations where coordination between the units in the river and
on the ground is needed.

Research on cooperative control of vehicle networks has grown
overwhelmingly over the past several years since it has many
applications in practice such as search and rescue, reconnaissance,
and surveillance, to name a few [9]. Leader–follower formation
control is a natural extension of the classical trajectory tracking
control problem to the multi-agent systems, and it is particularly
appreciated in many applications for its simplicity and scalability
[10]. In Ref. [11], a virtual leader coordination strategy has been
proposed for multi-agent formation control. The virtual leader
tracks its reference trajectory, while the agents maintain the
desired formation at the same time. The motion feasibility prob-
lem for multi-agent formations has been studied in Ref. [12],

where algebraic conditions were developed to determine the feasi-
bility of the formation motion based on the kinematics model of
agents. Various consensus and formation control approaches were
proposed in the literature for vehicles modeled as single and dou-
ble integrators [13–15], linear systems [16], fully actuated rigid
body attitude dynamics [17,18], and fully actuated Euler-
Lagrangian systems [19]. For underactuated multivehicle net-
works, several cooperative control methods have been developed
in the literature according to different models of vehicles.
Leader–follower formation control of multiple nonholonomic
mobile robots was considered in Refs. [10,20–25]. We refer the
readers to the survey paper [26] for a comprehensive literature
review of formation control of ground vehicles. Leader–follower
cooperative control of multiple underactuated surface vessels was
considered in Refs. [27–29], and cooperative control of underactu-
ated aircraft was considered in Refs. [30–32]. While this brief dis-
cussion is not intended to be a comprehensive review, it is found
that although most of control strategies in the existing work can
successfully be applied to homogeneous underactuated multive-
hicle networks, these control designs heavily depend on the spe-
cific structures of vehicle dynamics and hence can hardly be
applied to control heterogeneous networks of underactuated
vehicles. In practice, however, it is useful if a group of vehicles
can cooperate with each other regardless of the model parameters
or even structures of their dynamic models. Only a few works dis-
cuss the formation control problem of heterogeneous underactu-
ated networks. In Ref. [33], a formation stabilization control law
has been proposed for heterogeneous underactuated mechanical
systems using a passivity-based control technique and applied to
formation stabilization of PVTOL aircraft. Using a similar
passivity-based control idea, a cooperative control law has been
proposed in Ref. [34] for formation tracking of heterogeneous pla-
nar underactuated vehicles. These methods, however, require
global position measurements for feedback purposes.

In the survey paper [35], multi-agent formation control strat-
egies were reviewed and categorized into position-, displacement-
and distance-based approaches depending on the sensing capabil-
ity and the interaction topology. In the position-based approach,
such as in Refs. [21], [27], and [28], agents sense their positions
with respect to a global coordinate system, and interactions are
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not necessarily required because the desired formation can be
achieved by position control of individual agents. Distance-based
coordination approaches, such as Ref. [36], do not need the local
coordinate systems to be aligned with each other, but the interac-
tion graph has to be rigid or persistent and must contain redundant
connections. The displacement-based approach balances the sens-
ing capability and the interaction requirements, and thus, is partic-
ularly useful in applications where the GPS signal is not available
while onboard sensors can provide measurements necessary for
feedback. In the displacement-based approach, the desired forma-
tion is specified by the interagent positions, which implies that
agents need to know their orientation in the global coordinate
system.

In this work, we employ a displacement-based approach for
coordinated motion and apply it to formation control of networks
of heterogeneous underactuated vehicles. Moreover, we allow for
the time-varying geometric pattern of the vehicles to capture the
changes in vehicle arrangements as well as obstacle and collision
avoidance. To the best of our knowledge, a rigorous distributed
displacement-based control law that can be applied to time-
varying formation of heterogeneous underactuated vehicle net-
works has not yet been developed. The preliminary results of this
research were presented in Ref. [37].

1.2 Contributions and Significance. We present a novel dis-
tributed displacement-based time-varying formation control
approach for networks of heterogeneous planar underactuated
vehicles without global position measurements. Specifically,

(1) Since vehicle networks are rarely homogeneous due to vari-
ety of sizes, capabilities, and mediums of operation, we do
not assume any particular structure for the vehicle model
thus allowing them to have non-identical dynamics. In
other words, the formation control is designed for heteroge-
neous vehicle networks.

(2) Almost all vehicles in practice are underactuated, rendering
the control laws with full actuation assumption impractical.
This work applies to networks of underactuated vehicles.
Since all fully actuated systems are feedback equivalent to
the double-integrator dynamics, the formation control of
heterogeneous fully actuated networks is equivalent to for-
mation control of homogeneous double-integrator net-
works. Thus, we emphasize that the problem of formation
control of heterogeneous underactuated networks is essen-
tially different from and far more complicated than forma-
tion control of fully actuated networks.

(3) The proposed formation control law is distributed, i.e., it
requires only neighbor-to-neighbor information exchange,
and it does not require any global position measurements.
We emphasize that the requirement of “without global posi-
tion measurements” is an essential difficulty of distributed
control. Moreover, the formation can be time-varying,
which is useful in many applications, particularly when the
shape of formation must change to avoid obstacles or colli-
sions with other vehicles.

Compared with existing results in the literature and in contrast
to existing controllers in Refs. [10], [20–25], and [27–32], which
are applicable only to homogeneous vehicle networks, the
approach proposed in this article can be applied to heterogeneous
underactuated vehicle networks. In contrast to our previous coor-
dination methods in Refs. [24] and [37], the approach proposed in
this work can be used in time-varying formation. In contrast to the
formation strategy in Ref. [34], the proposed approach does not
require global position measurements of the followers, and guar-
antees uniform global asymptotic stability (UGAS) of the closed-
loop system subject to bounded uncertainties and disturbances.

1.3 Outline. Section 2 presents the preliminaries and problem
formulation. The feasible trajectory generation and the reduced

order error dynamics are proposed in Sec. 3. In Sec. 4, a nonlinear
control design for time-varying formation of a network of hetero-
geneous planar underactuated vehicles is presented. Section 5
applies the proposed control approach to various types of planar
vehicles. Simulation results are shown in Sec. 6. Section 7 offers
the concluding remarks.

2 Preliminaries and Problem Formulation

2.1 Notations. The notations are standard in this paper. Let
Rn represent the n-dimensional Euclidean space; R�0 the set of
all non-negative real numbers; j � j the Euclidean norm of vectors
in Rn; the diagonal matrix. Throughout this paper, we omit the
arguments of functions when they are clear from the context. For
multi-agent systems considered in this paper, we use the bold and
nonitalicized subscript i to denote the index of an agent.

2.2 Planar Underactuated Vehicle Model. Without loss of
generality, a planar underactuated vehicle can be modeled as a
three degree-of-freedom planar rigid body with only two inde-
pendent control inputs. The motion of a single vehicle i is
described by assigning the body-fixed frame fxbi; ybig to its center
of mass at ½xi; yi�> relative to a fixed frame fX, Yg and orientation
angle hi, as shown in Fig. 1. The general planar vehicle model is
represented by the kinematic and force–balance equations of
motion as

_xi ¼ vxi cos hi � vyi sin hi

_yi ¼ vxi sin hi þ vyi cos hi

_hi ¼ xi

_vxi ¼ fxiðvxi; vyi;xi; hi; tÞ þ dxiðtÞ þ s1i

_vyi ¼ fyiðvxi; vyi;xi; hi; tÞ þ dyiðtÞ þ ayis2i

_xi ¼ fxiðvxi; vyi;xi; hi; tÞ þ dxiðtÞ þ axis2i

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(1)

where ½vxi; vyi�> represents the body-fixed velocity, xi is the angu-
lar velocity, s1i and s2i are the control inputs. The constant coeffi-
cients ayi and axi 6¼ 0 determine the contribution of s2i to sway
and yaw motions, respectively. In addition, fxið�Þ; fyið�Þ; fxið�Þ are
known locally Lipschitz continuous functions, and
dxið�Þ; dyið�Þ; dxið�Þ stand for the unknown but bounded model
uncertainties and disturbances, i.e.,

jdxiðtÞj � Dxi; jdyiðtÞj � Dyi; jdxiðtÞj � Dxi (2)

Fig. 1 Generic planar underactuated vehicle model of agent i
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for all t � 0, where Dxi;Dyi;Dxi are known positive constants. It is
noted that although the force–balance equations may take various
forms, such as Euler–Lagrange equations or port-controlled Ham-
iltonian form, we leave these equations undefined since our con-
trol design is generic and applicable to any of these forms.

From rigid body dynamics, the term fyið�Þ in the sway force-
balance equation in Eq. (1) consists of quadratic Coriolis and cen-
trifugal force terms f C

yi ð�Þ and damping terms f D
yi ð�Þ, i.e.,

fyi ¼ f C
yi þ f D

yi . The Coriolis force has the form �mixi � vi, and
the centrifugal force has the form �mixi � ðxi � riÞ, where mi is
the mass of the rigid body, xi is the angular velocity vector, ri

and vi are the position and velocity vectors relative to the rotating
reference frame, , respectively. Thus, the components of Coriolis
and centrifugal forces in the sway direction are only functions of
vxi and xi, that is, f C

yi ¼ f C
yi ðvxi;xiÞ, and the directions of the forces

are opposite to the ybi direction. Furthermore, the component of
the damping force in the direction ybi is only related to vyi, that is
f D
yi ¼ f D

yi ðvyiÞ, and its direction is opposite to the direction of vyi.
Based on the above discussion, we make the following assumption
on the underactuated force–balance equation of the vehicle
dynamics considered in this paper.

ASSUMPTION 1. There exists a constant gi > 0 related to the iner-
tia parameters such that

@fyi vxi; vyi;xi; hi; t
� �

@vxi

¼ �gixi (3)

and the direction of hydrodynamic damping force is opposite to
the direction of vyi, that is,

@fyi vxi; vyi;xi; hi; t
� �

@vyi

� 0 (4)

Remark 1. The conditions (3) and (4), which come from the
rigid body assumption of the planar vehicle system, do not present
real limitations since they are satisfied in planar vehicle models and
robotic systems in general. The general form of Euler–Lagrangian
equations for planar vehicle systems has an invertible generalized
mass matrix. Condition (3) is satisfied since the centrifugal and
Coriolis matrix is skew-symmetric, and condition (4) is satisfied
since the damping matrix is positive semidefinite.

2.3 Graph Theory. Consider a network of Nþ 1 heterogene-
ous planar underactuated vehicles, where the vehicles are num-
bered i ¼ 0; 1;…;N with 0 representing the group leader, which
can be either a virtual vehicle or an actual vehicle, and 1;…;N
the followers. For formation control of planar underactuated vehi-
cle networks, we use graphs to define the communication interac-
tion among the vehicles [38]. The network topology is associated
with a directed graph G ¼ ðV;EÞ having Nþ 1 nodes with node
dynamics (1), where V ¼ f0; 1;…;Ng and E � V � V are the set
of vertices and edges, respectively. We denote by ði; jÞ 2 E the
fact that node j can obtain information from node i for feedback
control purposes. The set of neighboring nodes that communicate
their information to node i is denoted by N i ¼ fj j ðj; iÞ 2 Eg, i.e.,
the set of nodes with edges incoming to i, as shown in Fig. 2. Let
wij be a real number associated with the edge ðj; iÞ for any
i; j 2 V, representing the weighting coefficients of the communi-
cation between the vehicles. The physical meaning of the weight-
ing coefficients wij represents the different levels of importance of
the agent neighbors’ information states. We assume that wij > 0 if
ðj; iÞ 2 E and wij ¼ 0, otherwise such that

P
j2N i

wij ¼ 1. We
make the following assumption on the communication topology
graph considered in this paper.

ASSUMPTION 2. There exists at least one directed path starting
from the group leader to any other agent in the network captured
by the communication graph G, which implies that the graph G
contains a directed spanning tree. The group leader does not

receive information from any other agent. Moreover, we assume
that no self-loop or loop is allowed in the graph G.

2.4 Problem Formulation. The formation control problem is
to design a distributed control protocol such that the network of
heterogeneous planar vehicles moves together following the
leader and asymptotically converge to as predefined geometric
pattern, which can be either time-invariant or time-varying. The
desired geometric pattern of the vehicle formation is defined by a
set of time-varying offset vectors dijðtÞ 2 R3; i; j ¼ 0; 1;…;
N; 8t � 0. We denote the configuration variables of agent i as
qi ¼ ½xi; yi; hi�>.

Formation control problem: Design distributed control laws for
each follower agent without global position measurements such
that: (i) the solutions of the closed-loop system are uniformly
bounded; (ii) all the vehicles in the network can maintain a pre-
scribed formation in the sense that

lim
t!1

qi �
X
j2N i

wij½qj þ dijðtÞ�
� �

¼ 0; 8 i 2 V (5)

3 Feasible Trajectory and Error Dynamics

3.1 Feasible Trajectory Generation. Unlike fully actuated
systems, underactuated system cannot be commanded to track
arbitrary trajectories. Similarly, the desired configuration trajec-
tory also cannot be assigned arbitrarily in formation. In other
words, the time-varying offset dijðtÞ ¼ ½dx

ijðtÞ; d
y
ijðtÞ; dh

ijðtÞ�
>

can-
not be assigned to each vehicle arbitrarily. For a planar vehicle
with one degree of underactuation, the time-varying offset vector
can only be independently specified for two elements. The first
two elements dx

ijðtÞ and dy
ijðtÞ are specified for the formation,

which assign the desired position trajectory of the follower agent i
relative to that of its neighbor j 2 N i. Then, the orientation offset
dh

ijðtÞ must be determined from the vehicle dynamics. Specifically,
let us denote the desired position trajectory assigned to agent i
from all agents j 2 N i by

�xiðtÞ :¼
X
j2N i

wij½xj þ dx
ijðtÞ�; �yiðtÞ :¼

X
j2N i

wij½yj þ dy
ijðtÞ� (6)

Then, the feasible orientation trajectory �hiðtÞ needs to be deter-
mined based on the nonholonomic constraint of agent i. It follows

Fig. 2 Communication graph of N 1 1 heterogeneous vehicle
network
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from Eq. (1) that the desired orientation trajectory �hiðtÞ is a solu-
tion of the following second-order ordinary differential equation:

_�vyi tð Þ ¼ fyi �vxi tð Þ; �vyi tð Þ; �xi tð Þ; �hi tð Þ; t
� �

þ ayi

axi

_�xi tð Þ � fxi �vxi tð Þ; �vyi tð Þ; �xi tð Þ; �hi tð Þ; t
� �� �

(7)

Subject to initial conditions �h ið0Þ ¼ �hi;0 and _�hið0Þ ¼ _�h i;0, and
�vxiðtÞ; �vyiðtÞ, and �xiðtÞ are given by

�vxiðtÞ
�vyiðtÞ
�xiðtÞ

2
664

3
775 ¼

cos �hiðtÞ sin �hiðtÞ 0

�sin �hiðtÞ cos �hiðtÞ 0

0 0 1

2
664

3
775

_�xiðtÞ
_�yiðtÞ
_�hiðtÞ

2
6664

3
7775

It is noted that no global position measurement is required in Eq.

(7). Next, the feasible orientation trajectory �hiðtÞ can be calculated
by numerically integrating Eq. (7) given any smooth position off-

set ½dx
ijðtÞ; d

y
ijðtÞ�

>
. Furthermore, the feasible orientation offset

variable dh
ijðtÞ is selected as dh

ijðtÞ ¼ �hiðtÞ � hjðtÞ.
Remark 2. The second-order ordinary differential Eq. (7)

reduces into a first order ordinary differential equation in the case
of ayi ¼ 0. We emphasize that only the local motion information
(velocity and acceleration) are used in feasible trajectory genera-
tion. The formation is achieved if xi ! �xiðtÞ; yi ! �yiðtÞ, and
hi ! �h iðtÞ. In the control design, we will use the differences ðxi �
�xiðtÞÞ and ðyi � �yiðtÞÞ for feedback purpose, and only relative
position measurements ðxi � xjÞ and ðyi � yjÞ are required to con-
struct these difference signals.

3.2 Reduced Order Error Dynamics. In this section, we
introduce a transformation that results in reduced order error
dynamics. Define the new formation errors zi ¼ ½z1i; z2i; z3i�> for
agents i ¼ 1;…;N as

zi ¼ JðhiÞ>½ð _qi � _�qiÞ � Kðqi � �qiÞ� (8)

where �qi :¼ ½�xi; �yi;
�hi�>, the matrix

JðhiÞ :¼
cos hi �sin hi 0

sin hi cos hi 0

0 0 1

2
4

3
5 (9)

and K :¼ diagfk1; k2; k3g with k1, k2, k3 < 0. The idea is that
when the error vector ziðtÞ asymptotically converges to 0, all con-
figuration errors asymptotically converge to 0 as t!1, as stated
in the following lemma.

LEMMA 1. Consider the error zi defined in Eq. (8), where K :¼
diagfk1; k2; k3g with k1, k2, k3 < 0. If the error jziðtÞj ! 0 as
t!1, then the formation error jqiðtÞ � �qiðtÞj ! 0 as t!1.

Proof. Since JðhiÞ> is an orthogonal matrix, jziðtÞj ! 0 implies
jð _q i � _�qiÞ � Kðqi � �qiÞj ! 0, which also can be written as a per-
turbed linear system

_~qi ¼ K~qi þ fiðtÞ; lim
t!1
jfiðtÞj ¼ 0 (10)

where ~qi :¼ qi � �qiðtÞ, and fiðtÞ ¼ JðhiÞziðtÞ. The nominal part
_~qi ¼ K~qi of the perturbed linear system is exponentially stable,
and the perturbation term fiðtÞ converges to zero as t!1. Then,
by the converging-input-converging-state property of stable linear
systems [39], we conclude that j~qiðtÞj ! 0, and j _~qiðtÞj ! 0 as
t!1. �

Thus, the control objective is then to design a controller, which
asymptotically stabilize the formation errors ziðtÞ for all agents
i ¼ 1;…;N. The reduced order error dynamics for agent i are cal-
culated by taking derivative of Eq. (8) along the trajectory of
Eq. (1) as

_zi ¼ _JðhiÞ>ð _~qi � K~qiÞ þ JðhiÞ>ð€~qi � K _~qiÞ (11)

Substituting Eq. (1) for agents i and j into the error dynamics (11),
and using the following feedback transformation:

s1i ¼ � fxi þ xivyi þ cosðhi � �h iÞð _�vxi � �xi�vyiÞ
þ sinðhi � �hiÞð _�vyi þ �xi�vxiÞ þ k1vxi

�k1½�vxi cosðhi � �hiÞ þ �vyi sinðhi � �hiÞ� þ u1i

(12)

s2i ¼
1

axi

�fxi þ _�xi þ k3 xi � �xið Þ þ u2i

� �
(13)

the reduced order error dynamics (11) can be written as

_z1i

_z2i

_z3i

2
6664

3
7775 ¼

xiz2i

�xiz1i

0

2
6664

3
7775þ

u1i

Wi

u2i

2
6664

3
7775þ

dxiðtÞ

dyiðtÞ

dxiðtÞ

2
6664

3
7775 (14)

where

Wi ¼ _vyi þ xivxi þ sinðhi � �hiÞð _�vxi � �xi�vyiÞ
�cosðhi � �hiÞð _�vyi þ �xi�vxiÞ � k2vyi

þk2½��vxi sinðhi � �hiÞ þ �vyi cosðhi � �hiÞ� (15)

The error dynamics (14) has only three states for each agent that
must be stabilized to achieve the desired formation. Next, we will
design the new control inputs ½u1i; u2i�> to stabilize the reduced
order error dynamics (14) for all agents i ¼ 1;…;N. The control
law will be distributed and will not use global position measure-
ments since (14) only depends on relative pose of agent i with
respect to its neighbor j and their velocities and accelerations in
their own body-fixed frames measured by onboard sensors such as
Lidar, camera, inertial measurement unit, and speedometer.

3.3 Technical Lemmas. In this section, we review and
develop some results needed for the main results of the paper.

LEMMA 2 ([40, restated]). Consider the following system:

_x1 ¼ f t; x1ð Þ þ x tð Þx2

_x2 ¼ �p x tð Þ> @V

@x1

� �> (16)

where x1 2Rn1 ; x2 2R; f : R�0�Rn1!Rn1 ;x : R�0!Rn1 ; V :
R�0�Rn1!R�0 and p>0 is a constant. Let the following
Assumptions A1–A3 hold.

ASSUMPTION 1. There exist class K1 functions a1ð�Þ and a2ð�Þ,
and a positive definite function a3ð�Þ such that, for all t � 0; and
x1 2 Rn1

a1 jx1jð Þ � V t; x1ð Þ � a2 jx2jð Þ;
@V

@t
þ @V

@x1

f t; x1ð Þ � �a3 jx1jð Þ; a:e:

ASSUMPTION 2. There exists a continuous nondecreasing func-
tion b : R�0 ! R�0 such that, for all t � 0; and x1 2 Rn1

max jf t; x1ð Þj;
���� @V t; x1ð Þ

@x1

����
( )

� b jx1jð Þjx1j; a:e:

ASSUMPTION 3. The function xð�Þ is bounded with a bounded
first derivative, smooth and persistently exciting (PE), i.e., there
exist T > 0;l > 0 such that
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ðtþT

t

jxðsÞj2ds � l; 8t � 0

Then the origin of Eq. (16) is UGAS. Furthermore, if the origin of
system _x1 ¼ f ðt; x1Þ is uniformly globally exponentially stable
(UGES), then the origin of Eq. (16) is UGES.

The next lemma presents a cascaded-like property of the error
dynamics (14), which suggests to separately control the linear and
angular dynamics, and is important in the control design.

LEMMA 3. Let Assumption 1 hold. Under feedback transforma-
tion (12), (13), if both z3iðtÞ and j½u1iðtÞ; u2iðtÞ�j converge to zero
exponentially as t!1, and �xiðtÞ is bounded and PE, then the
interconnected term WiðtÞ ! 0 exponentially as t!1.

Proof. It follows from Lemma 1 that z3iðtÞ ! 0 exponentially
implies ðhiðtÞ � �hiðtÞÞ ! 0 and ð _hiðtÞ � _�hiðtÞÞ ! 0 exponentially
as t!1. Consequently, sinðhiðtÞ � �hiðtÞÞ ! 0 and cosðhiðtÞ �
�hiðtÞÞ ! 1 exponentially. Then, from Eq. (12), we have

ð _vxi � _�vxi Þ ¼ k1ðvxi � �vxiÞ þ �xiðvyi � �vyiÞ þ oxðtÞ (17)

where oxðtÞ ! 0 exponentially, and from the model (1), we have

ð _vyi � _�vyiÞ ¼ fyiðvxi; vyi;xi; hi; tÞ þ ayis2i

�fyið�vxi; �vyi; �xi; �hi; tÞ � ayi�s2i (18)

Then, the feedback transformation (13) implies that
(s2i � �s2iÞ ! 0, and using the conditions (3) and (4) in Assump-
tion 1, (17) and (18) can be written as

_vxi � _�vxi

_vyi � _�vyi

" #
¼

k1 �xiðtÞ
�gi �xiðtÞ A22ðtÞ

" #
vxi � �vxi

vyi � �vyi

" #
þ oðtÞ (19)

where A22ðtÞ ¼ @fyi=@vyi � 0 and joðtÞj ! 0 exponentially. Note
that the system (19) can be seen as a linear time-varying system
under a exponentially converging input o(t), and the nominal part
of Eq. (19) with A22ðtÞ 	 0 is reminiscent of the system (16) in
Lemma 2. Since k1 < 0 and A22ðtÞ � 0, referring to Lemma 2,
the comparison lemma, and converging-input-converging-state
property of linear systems, we conclude that system (19) is UGES
provided that �xiðtÞ is bounded and PE. On the other hand, it fol-
lows from Eq. (15) that:

Wi ! ð _vyi � _�vyiÞ � k2ðvyi � �vyiÞ þ �xiðtÞðvxi � �vxiÞ (20)

and from the UGES of Eq. (19), we conclude that WiðtÞ ! 0
exponentially as t!1. �

4 Nonlinear Control Design

We begin this section by noting that different control laws may
be applied to stabilize the error dynamics (14), for instance, slid-
ing mode control, backstepping design, or linear high-gain feed-
back. While any nonlinear control technique may be applicable
under this framework, in this paper, we choose sliding mode con-
trol due its simplicity and robustness, which only requires bound-
edness of unknown modeling uncertainties and disturbances.

First, it is noted that the error dynamics (14) is structured such
that the angular error z3i is decoupled from the positioning error
½z1i; z2i�>, and thus can be independently controlled. Therefore, we
choose the simplest sliding mode control law as

u2i ¼ �k2i signðz3iÞ (21)

where k2i > Dxi implying that z3i is stabilized to zero in finite
time. It follows from Lemma 1 that angular error will converge to
zero as t!1. Next, consider the linear error dynamics ðz1i; z2iÞ.
We define the sliding variable in the following form:

siðz1i; z2i; tÞ ¼ �xiz1i þWiðtÞ þ ciz2i (22)

where ci > 0 is a constant. Referring to (14), the dynamics on the
sliding manifold fsi ¼ 0g are given by

_z2i ¼ �ciz2i þ dyiðtÞ (23)

where the nominal part is an exponential stable linear system. If
the mismatched uncertainty dyið�Þ has a linear growth bound with
respect to z2i, then the dynamics on the sliding manifold is glob-
ally exponential stable.

To derive the control law, let us consider the Lyapunov candi-
date ViðsiÞ ¼ 1

2
s2

i and take its time derivative along ðz1i; z2iÞ-
trajectories as

_V i t; z1i; z2ið Þ ¼ si

@si

@z1i

xiz2i þ u1i þ dxi tð Þð Þ
�

þ @si

@t
þ @si

@z2i

�xiz1i þWi tð Þ þ dyi tð Þ
� ��

(24)

Following standard sliding mode control approach and assuming
@si=@z1i 6¼ 0, we choose the control law as:

u1i ¼ �xiz2i �
@si

@z1i

	 
�1
@si

@z2i

�xiz1i þWið Þþ @si

@t
þ k1isign sið Þ

� �
(25)

which guarantees

_V i t; z1i; z2ið Þ � jsij �k1i þ
���� @si

@z1i

����Dxi þ
���� @si

@z2i

����Dyi

" #
(26)

The robustness gain k1i is chosen such that

k1i >

���� @si

@z1i

����Dxi þ
���� @si

@z2i

����Dyi (27)

Then, trajectories will converge to the sliding manifold fsi ¼ 0g
in finite time. On the sliding manifold, the dynamics are repre-
sented by Eq. (23) and exponential stability can be established
under the linear growth bound assumption that jdyið�Þj � jijz2ij,
where ji is a positive constant [41, Lemma 9.1]. Note that
j@si=@z1ij ¼ jxiðtÞj and j@si=@z2ij ¼ ci. For each vehicle i, the
maximum angular velocity must be bounded in practice, i.e.,
jxiðtÞj � xMi for all t � 0, and can be measured by experiments
in advance. Thus, the robustness gain k1i can be simply chosen
such that k1i > xMiDxi þ ciDyi in practice. The following theorem
presents the main results.

THEOREM 1. Consider a network of heterogeneous planar under-
actuated vehicles, where the node dynamics given by Eq. (1) sat-
isfy Assumption 1, with the communication topology satisfying
Assumption 2. Assume that the linear and angular velocities and
accelerations of the leader are bounded, the angular velocity for
each follower i is nonzero, i.e., xiðtÞ 6¼ 0 for all t � 0, and the
mismatched uncertainty dyið�Þ has a linear growth bound, i.e.,
jdyiðtÞj � jijz2ij with ji > 0. Then, under the control law (12),
(13), (21), and (25) with control gains ci > 0; k2i > Dxi, and k1i

satisfying (27), the origin of error dynamics (14) is UGAS.
Proof. Consider the Lyapunov function candidate for the error

dynamics (14) as Wi ¼ ViðsiÞ þ 1
2

z2
3i. From Eqs. (21) and (26), it

follows that, along the trajectories of Eq. (14):

_W i � � k1i �
���� @si

@z1i

����Dxi �
���� @si

@z2i

����Dyi

 !
jsij � k2i � Dxið Þjz3ij

� 0

(28)

Journal of Dynamic Systems, Measurement, and Control APRIL 2022, Vol. 144 / 041006-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/144/4/041006/6824335/ds_144_04_041006.pdf by Villanova U

niversity, Bo W
AN

G
 on 25 January 2022



which implies that the closed-loop system is globally stable, and
thus the formation error zi is bounded over the time interval
½0;þ1Þ. Again, the variables z3iðtÞ and siðtÞ converge to zero in
finite time. It is noted that z3i ! 0 for all i ¼ 1;…;N implies that
the error in angular motion for each agent will converge to zero as
t!1. Next, siðtÞ converges to zero in finite time implies that all
trajectories will reach the sliding manifold, and on the manifold,
z2iðtÞ ! 0 exponentially under the linear growth bound condition
jdyiðtÞj � jijz2ij, [41, Lemma 9.1]. Also, on the sliding manifold,
we have z1i ! Wi=xi, and with the assumption @si=@z1i 6¼ 0, we
only need to verify that WiðtÞ ! 0 as t!1. It also follows from
Eq. (22) that @si=@z1i 6¼ 0 is equivalent to xiðtÞ 6¼ 0. Since
z3iðtÞ ! 0 in finite time for all i ¼ 1;…;N, then ðhi � �hiÞ ! 0
and ð _hi � _�hiÞ ! 0 as t!1 with an exponential convergence
rate k3. This implies that the orientations of all vehicles in the net-
work are aligned with the predefined offset dh

ijðtÞ. Then, the con-
trol law (21) suggests that u2iðtÞ reaches zero in finite time, and
similarly, on the sliding manifold fsi ¼ 0g we have u2iðtÞ ! 0
exponentially as t!1. It follows from Lemma 3 that WiðtÞ ! 0
exponentially as t!1, and consequently z1iðtÞ ! 0 as t!1.
Therefore, the UGES of the closed-loop error dynamics has been
established. Finally, we conclude that the time-varying formation
of heterogeneous planar underactuated vehicle network is
achieved by Lemma 1. �

Remark 3. As mentioned above, the singularity condition
@si=@z1iðtÞ 6¼ 0 implies that xiðtÞ 6¼ 0. In case of xiðtÞ ¼ 0, the
ðz1i; z2iÞ-dynamics are uncoupled, that is, z2i cannot be controlled
by the control input u1i. In this situation, a hybrid control law can
be used to avoid singularity. Selecting si ¼ z1i, the control law
(25) is replaced with u1i ¼ �k1i signðsiÞ, where k1i > Dxi. Then,
the origin of the ðz1i; z3iÞ-subsystem is UGAS. Furthermore, dis-
turbance observers (DOB) are widely used in the literature to esti-
mate disturbances [42,43]. An efficient solution for counteracting
the mismatched disturbances is known as disturbance observer-
based sliding mode control (DOB-SMC) [44]. Thus, if the mis-
matched uncertainty dyiðtÞ is nonvanishing, an DOB-SMC may be
employed. In this case, the sliding variable (22) can be designed
as siðz1i; z2i; tÞ ¼ �xiz1i þWiðtÞ þ ciz2i þ d̂yiðtÞ, where d̂yiðtÞ is
the estimation of the dyiðtÞ. Then, the error dynamics (23) become
_z2i ¼ �ciz2i þ ½dyiðtÞ � d̂yiðtÞ�, and correspondingly, the origin of
the closed-loop system is UGAS if dyiðtÞ � d̂yiðtÞ ! 0 as t!1.

Remark 4. It is noted that _�vxiðtÞ; _�vyiðtÞ, and _�xiðtÞ are required in
the control law (12) and (13), which means that the acceleration
information of each vehicle should be known. In some practical
applications, the acceleration can be measured directly by on-
board sensors. In other cases, the acceleration can be estimated in
real-time using observers or differentiators. Various differentia-
tors can be used to estimate the accelerations, for instance, the
sliding mode differentiator [45], or the high-gain differentiator
[46], etc. Furthermore, the estimation errors can be viewed as a
part of the disturbances dxiðtÞ; dyiðtÞ; dxiðtÞ, which can be handled
by the proposed controller.

5 Applications

The time-varying formation of heterogeneous vehicles can be
applied in practical scenarios such as reconnaissance, surveil-
lance, payload transport, cooperative search, and for military
operations to increase the striking force from multiple sources on
the ground, in the sea, and in the air, to name a few examples.
Here, we present the specific forms of the generic terms in Eq. (1)
for various vehicles including wheeled mobile robots, marine sur-
face vessels, and PVTOL aircraft, and verify that conditions (3)
and (4) in Theorem 1 are satisfied. The vehicle models are pre-
sented in the Appendix.

5.1 Mobile Robots. Consider the model of a differentially
driven wheeled mobile robot i moving on a horizontal plane. The
general terms introduced in Eq. (1) can be determined as [24]

fxi ¼
midi

~mi

x2
i ; fyi ¼ �

mid
2
i

~I i

xivxi; fxi ¼ �
midi

~I i

xivxi

s1i ¼
1

~miri

sLi þ sRið Þ; s2i ¼
ai

2~I iri

sRi � sLið Þ

ayi ¼ di; axi ¼ 1

where mi; ri and ai are mass, wheel radius, and axle length of
agent i, respectively. ~mi ¼ mi þ 2Ji=r2

i ;
~I i ¼ Ii þ mid

2
i þ a2

i Ji=r2
i ,

where Ii and Ji are robot and wheel moment of inertia, respec-
tively. sLi and sRi represent the differential torques applied to the
left and right wheels, respectively. Note that, the nonholonomic
constraint is vyi ¼ dixi, where the constant di > 0 represents the
distance from the center of mass of robot i to its axle.

Conditions (3) and (4) are satisfied since @fyi=@vxi

¼ �ðmid
2
i =

~I iÞxi, and @fyi=@vyi ¼ 0. In this case, gi ¼ mid
2
i =

~I i.

5.2 Surface Vessel With Diagonal Mass Matrix. Compar-
ing the surface vessel i model in Ref. [8] with model in Eq. (1),
the general terms are derived as

fxi ¼
m22;i

m11;i
vyixi �

d11;i

m11;i
jvxija11;i sign vxið Þ

fyi ¼ �
m11;i

m22;i
vxixi �

d22;i

m22;i
jvyija22;i sign vyið Þ

fxi ¼
m11;i � m22;i

m33;i
vxivyi �

d33;i

m33;i
jxija33;i sign xið Þ

s1i ¼
Fi

m11;i
; s2i ¼

Ti

m33;i
; ayi ¼ 0; axi ¼ 1

where the parameters mkk;i’s (k¼ 1, 2, 3) are positive constants
representing the mass and inertia parameters of the surface vessel
including the added mass effects. The hydrodynamic damping is
represented by the power law parameters dkk;i and akk;i, (k¼ 1, 2,
3). The terms Fi and Ti are the control inputs, which represent the
surge force and the yaw moment, respectively. The conditions (3)
and (4) in Theorem 1 are satisfied since @fyi=@vxi

¼ �ðm11;i=m22;iÞxi, and @fyi=@vyi ¼ �ðd22;ia22;i=m22;iÞjvyija22;i�1

� 0. For this model, gi ¼ m11;i=m22;i.

5.3 Surface Vessel With Coupled Mass Matrix. In practice,
a model including coupling terms in the mass and hydrodynamic
damping matrices may be more realistic. Using the model pre-
sented in Ref. [8], we can determine the general terms in Eq. (1)
for agent i as

fyi ¼ axi fyi0 �
m23;i

m22;i
fxi0

	 

; dyi ¼

axi

m22;i
pyi �

m23;i

m33;i
pxi

	 


fxi ¼ axi fxi0 �
m23;i

m33;i
fyi0

	 

; dxi ¼

axi

m33;i
pxi �

m23;i

m22;i
pyi

	 


axi ¼
m22;im33;i

m22;im33;i � m2
23;i

; ayi ¼ �
m23;i

m22;i
axi

fxi0 ¼
m22;i

m11;i
vyixi þ

m23;i

m11;i
x2

i �
d11;i

m11;i
vxi

fyi0 ¼ �
m11;i

m22;i
vxixi �

d22;i

m22;i
vyi �

d23;i

m22;i
xi

fxi0 ¼
m11;i � m22;i

m33;i
vxivyi �

m23;i

m33;i
vxixi �

d23;i

m33;i
vyi �

d33;i

m33;i
xi

s1i ¼
Fi

m11;i
; s2i ¼

Ti

m33;i
; dxi tð Þ ¼ pxi

m11;i

The parameters m23;i; d23;i are non-negative and represent the off-
diagonal terms of the mass and damping matrices, and pxi; pyi; pxi

consist of environmental disturbances and modeling uncertainties.
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Conditions (3) and (4) in Theorem 1 are satisfied if m11;i >
m23;i and m23;id23;i < m33;id22;i because they guarantee
gi ¼ axiðm11;i � m23;iÞ=ðm22;iÞ > 0, and @fyi=@vyi ¼ axiðm23;id23;i

�m33;id22;iÞ=ðm22;im33;iÞ < 0. Both of these conditions are inher-
ent to vessel models since the off diagonal terms of the mass and
damping matrices are much smaller than the diagonal terms.

5.4 Planar Vertical Takeoff and Landing Aircraft. Con-
sider the model of PVTOL aircraft i moving in a vertical plane
under the influence of gravity [47]. The general terms introduced
in Eq. (1) are

fxi ¼ xivyi � g sin hi; fyi ¼ �xivxi � g cos hi; fxi ¼ 0

s1i ¼
Fi

mi

; s2i ¼
Ti

Ii

; ayi ¼ �
�iIi

mi

; axi ¼ 1

where i ¼ 0; 1;…;N; mi; Ii are the mass and the moment of inertia
of agent i, respectively. The parameter g is the gravity constant
and the constant �i > 0 represents the coupling between the yaw
moment and the lateral force on the aircraft.

Conditions (3) and (4) in Theorem 1 are satisfied since
@fyi=@vxi ¼ �xi, and @fyi=@vyi ¼ 0. In this case, gi ¼ 1.

6 Numerical Simulations

In this section, two numerical simulations are provided to verify
the performance of the proposed formation control approach. All
the parameters are given in SI units.

6.1 Example 1. Consider a network of eleven heterogeneous
planar underactuated vehicles with the indices i ¼ 0; 1;…; 10.
Agent 0 is the leader and agents 1 to 10 are the followers with the
communication topology graph as shown in Fig. 3(a). Agent 6
and agent 9 have two communication edges such that 6 follows 1
and 5, and 9 follows 3 and 4. Note that we assume that the com-
munication from agent 5 to agent 6 is more important than the
communication from agent 1 to agent 6, and that the communica-
tion from agent 4 to agent 9 is more important than the communi-
cation from agent 3 to agent 9. Therefore, we set the weighting
coefficients w61 ¼ 0:4; w65 ¼ 0:6; w93 ¼ 0:3; w94 ¼ 0:7; while
the remaining coefficients are all set to 1.

We assume that agents 0 to 3 are identical underactuated sur-
face vessels modeled with diagonal mass matrix and linear hydro-
dynamic damping (a11;i ¼ a22;i ¼ a33;i ¼ 1). The parameters of
agents 0 to 3 are given as

m11;i ¼ 1:412; m22;i ¼ 1:982; m33;i ¼ 0:354

d11;i ¼ 3:436; d22;i ¼ 12:99; d33;i ¼ 0:864
(29)

Agents 4 to 6 are also identical underactuated surface vessels
modeled with diagonal mass matrix model and nonlinear hydrody-
namic damping with the parameters given as

m11;i ¼ 1:317; m22;i ¼ 3:832; m33;i ¼ 0:926

d11;i ¼ 5:252; d22;i ¼ 14:138; d33;i ¼ 2:262

a11;i ¼ 1:510; a22;i ¼ 1:747; a33;i ¼ 1:592

(30)

Agents 7 to 10 are identical nonholonomic mobile robots with the
parameters given as

mi ¼ 3:0; Ii ¼ 0:025; Ji ¼ 6� 10�6

ai ¼ 0:33; di ¼ 0:08; ri ¼ 0:05
(31)

In this simulation, the leader is commanded to follow a straight
line in the x-direction with desired velocity 1 m=s. The geometric
shape of the desired formation for the ten follower vehicles is a
pentagram, where the center of the pentagram is located at the
leader. Then, the positions of the ten follower agents are to be
driven to the ten vertices of the pentagram, as shown in Fig. 3(a).
The radius of the circumscribed circle of the inner five vertices is
set to 3 m, and the corresponding radius of the circumscribed
circle of the outer five vertices is 9:434 m. The pentagram rotates
counterclockwise around its center with a constant angular veloc-
ity of 0:5 rad=s, making the formation time-varying. All vehicles
start from rest at zero orientation, while their initial positions can
be observed in Fig. 4.

To demonstrate robustness, we applied disturbances dxiðtÞ ¼
0:25 sinðtÞ þ 0:5 sinð20tÞ and dxiðtÞ ¼ 0:4 sinðtÞ þ 0:5 sinð10tÞ.
We also assume that the communication between agents 5 and 6,
and the communication between agents 4 and 9 suddenly breaks
at t¼ 5 s. The control gains and disturbance bounds for all agents
were selected as k1 ¼ k2 ¼ k3 ¼ �1; k1i ¼ k2i ¼ ci ¼ 3; Dxi ¼
Dxi ¼ 0:75; i ¼ 1;…; 10: To avoid excessive chattering, we used
the hyperbolic tangent function tanhð�=0:01Þ to approximate the
discontinuous signum function .

Figure 4 illustrates the position trajectories of all agents at
t¼ 0 s, t¼ 25 s, and t¼ 45 s. It is clear that the desired pentagram
formation is achieved after the leader has traveled approximately
25 m in just over 25 s. Figure 5 shows the time history of the root
mean squared of all formation errors, which is of the form
RMSð ~½�� iÞ ¼ ð1n

Pn
i¼1ð½�� � �½��Þ2i Þ

1=2
, demonstrating formation con-

verging after 25 s. It can also be seen that the breakage of commu-
nication at t¼ 5 s temporarily increases the overall formation
errors but the asymptotic convergence continues after a short
interruption.

6.2 Example 2. Consider a network of six heterogeneous pla-
nar underactuated vehicles with the indices i ¼ 0; 1;…; 5. Agent 0
is the leader and agents 1 to 5 are the followers with the

Fig. 3 Communication topology graphs in the simulations: (a)
Example 1 and (b) Example 2

Fig. 4 Illustration of the trajectories of the eleven planar
vehicles in Example 1
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communication topology graph as shown in Fig. 3(b). We set the
weighting coefficients w31 ¼ w34 ¼ 0:5 while the remaining coef-
ficients are all set to 1.

Agent 0 is a PVTOL aircraft, where the model parameters are
given as mi ¼ 1; Ii ¼ 0:1; �i ¼ 0:2, and g¼ 9.81. Agents 1 and 2
are wheeled mobile robots, where the model parameters are given
as (31). Agents 3 to 5 are different surface vessels, where agent 3
is with linear hydrodynamic damping, and the model parameters
are given as Eq. (29); agents 4 and 5 are with nonlinear hydrody-
namic damping and the model parameters are given as Eq. (30).
We use the scenario where all types of vehicles are involved in
coordination in order to show the versatility of the approach.

In this simulation, the leader is commanded to follow a sinusoi-
dal path, i.e., ðxdðtÞ; ydðtÞÞ ¼ ðt; sinðtÞÞ. The geometric shape of
the desired formation for the six vehicles is an time-varying isos-
celes right triangle, as shown in Fig. 3(b). We set the length of the

two congruent sides to
ffiffiffi
2
p
ð20� t=6Þ. In other words, the position

offsets are given as ðdx
40; d

y
40Þ ¼ ðdx

54; d
y
54Þ ¼ ðt=12� 10; 10� t=

12Þ; ðdx
10; d

y
10Þ ¼ ðdx

21; d
y
21Þ ¼ ðdx

34; d
y
34
Þ ¼ ðt=12� 10; t=12� 10Þ.

All vehicles start from rest at zero orientation, while their initial
positions can be observed in Fig. 6.

To demonstrate robustness, we applied disturbances dxiðtÞ ¼
0:25 sinðtÞ þ 0:5 sinð20tÞ and dxiðtÞ ¼ 0:4 sinðtÞ þ 0:5 sinð10tÞ.

The control gains and disturbance bounds for all agents were
selected as k1 ¼ k2 ¼ k3 ¼ �1; k1i ¼ k2i ¼ ci ¼ 5; Dxi ¼ Dxi ¼
0:75; i ¼ 1;…; 5. Figure 6 illustrates the position trajectories of
all agents at t¼ 0 s, t¼ 30 s, and t¼ 60 s. Note that when the angu-
lar velocity xiðtÞ ¼ 0, the hybrid control law is used to avoid sin-
gularity as discussed in Remark 3. It is clear that the desired
triangle formation is achieved after the leader has traveled approx-
imately 30 m in just over 30 s. Figure 7 shows the time history of
the RMS formation errors demonstrating formation converging
after about 30 s.

7 Conclusion

In this work, we develop a distributed formation control
approach for networks of heterogeneous planar underactuated
vehicles without requiring global position measurements. All
vehicles in the network are modeled as generic three degree-of-
freedom planar rigid bodies with two control inputs, and are
allowed to have nonidentical dynamics. The feasible trajectory for
each vehicle in the network is generated based on the nonholo-
nomic constraint of the vehicle. A transformation is proposed to
reduce the order of error dynamics and then a sliding mode con-
trol law is employed to stabilize the error dynamics. While the
sliding mode control approach is selected, other methods such as
backstepping technique can also be employed using the same error
transformation introduced in this work. It is shown that the
approach can be applied to networks of nonholonomic mobile
robots, underactuated surface vessels with various modeling com-
plexities, and planar air vehicles. We successfully apply the pro-
posed approach to a time-varying formation control problem for a
complex network of heterogeneous mobile robots and surface ves-
sels. Our future research will focus on multivehicle formation
control with saturation constraints, and formation control of heter-
ogeneous three-dimensional underactuated vehicle networks.

Appendix: Force–Balance Equations

Wheeled mobile robots. The force–balance equations for mobile
robot i (Fig. 8(a)) with nonholonomic constraint vyi ¼ dixi are
given by [24]

_vxi ¼
midi

~mi

x2
i þ

1

~miri

sLi þ sRið Þ þ dxi tð Þ

_xi ¼ �
midi

~I i

xivxi þ
ai

2~I iri

sRi � sLið Þ þ dxi tð Þ

Fig. 5 Convergence of the RMS formation errors of the ten fol-
lower vehicles in Example 1

Fig. 6 Illustration of the trajectories of the six planar vehicles
in Example 2

Fig. 7 Convergence of the RMS formation errors of the six fol-
lower vehicles in Example 2
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Surface vessel with diagonal mass matrix. The force–balance
equations of a underactuated surface vessel i (Fig. 8(b)) model
with nonlinear hydrodynamic damping are given by [8]

_vxi ¼
m22;i

m11;i
vyixi �

d11;i

m11;i
jvxija11;i sign vxið Þ þ

Fi

m11;i
þ dxi tð Þ

_vyi ¼ �
m11;i

m22;i
vxixi �

d22;i

m22;i
jvyija22;i sign vyið Þ þ dyi tð Þ

_xi ¼
md;i

m33;i
vxivyi �

d33;i

m33;i
jxija33;i sign xið Þ þ

Ti

m33;i
þ dxi tð Þ

This model is also applicable to linear hydrodynamic damping
with a11;i ¼ a22;i ¼ a22;i ¼ 1.

Surface vessel with coupled mass matrix. The force–balance
equations of a underactuated surface vessel i (Fig. 8(b)) model
with couple mass matrix are given by [8]

m11;i 0 0

0 m22;i m23;i

0 m23;i m33;i

2
64

3
75

_vxi

_vyi

_xi

2
64

3
75þ

�m22;ivyixi � m23;ix2
i

m11;ivxixi

�md;ivxivyi þ m23;ivxixi

2
664

3
775

þ
d11;i 0 0

0 d22;i d23;i

0 d23;i d33;i

2
64

3
75

vxi

vyi

xi

2
64

3
75 ¼

Fi

0

Ti

2
64

3
75

PVTOL aircraft. The force–balance equations for PVTOL air-
craft i (Fig. 8(c)) controlled by the force Fi and moment Ti is
given as [47]

€x ¼ Fi

mi

cos hi þ
�iTi

mi

sin hi

€y ¼ Fi

mi

sin hi �
�iTi

mi

cos hi � g

€h ¼ Ti

Ii

After some manipulation and inclusion of uncertainties, the equa-
tions in form (1) are given by

_vxi ¼ xivyi � g sin hi þ
Fi

mi

þ dxi tð Þ

_vyi ¼ �xivxi � g cos hi �
eiTi

mi

þ dyi tð Þ

_xi ¼
Ti

Ii

þ dxi tð Þ
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