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ABSTRACT

Developing distributed control algorithms for multi-agent
systems is difficult when each agent is modeled as a nonlinear dy-
namical system. Moreover, the problem becomes far more com-
plex if the agents do not have sufficient number of actuators to
track any arbitrary trajectory. In this paper, we present the first
fully decentralized approach to formation control for networks
of underactuated surface vessels. The vessels are modeled as
three degree of freedom planar rigid bodies with two actuators.
Algebraic graph theory is used to model the network as a di-
rected graph and employing a leader-follower model. We take
advantage of the cascade structure of the combined nonlinear
kinematic and dynamic model of surface vessels and develop a
reduced-order error dynamic model using a state transformation
definition. The error dynamics and consequently all system states
are then stabilized using sliding mode control approach. It is
shown that the stabilization of the reduced-order error dynamics
guarantees uniform global asymptotic stability of the closed-loop
system subject to bounded uncertainties. The proposed control
method can be implemented in directed time-invariant communi-
cation networks without the availability of global position mea-
surements for any of the vehicles participating in the network. An
example of a a network of five surface vessels is simulated to ver-
ify the effective performance of the proposed control approach.

∗Address all correspondence to this author.

INTRODUCTION

In this paper, we study the underactuated formation control
problems of surface vessel networks. For a single vessel, it is
common to consider the motion in a horizontal plane, where the
motion in heave, roll and pitch are neglected. The vessel then is
assumed to be controlled by only two propellers, which are the
force in surge and the control torque in yaw. Over the past twenty
years, significant efforts have been devoted to handle the control
problems of a single underactuated surface vessel. Such prob-
lems include solving the set-point regulation problem using time-
varying approach [1, 2], discontinuous control technique [3, 4];
solving the trajectory tracking problem using Lyapunov function
approach [5, 6], sliding mode approach [7, 8] and backstepping
design [9]; and solving the path following problem using adap-
tive control strategy [10].

Trajectory tracking decentralized control of networks using
leader-follower formation can be considered as classical trajec-
tory tracking control problem extended to the multi-agent sys-
tems. Research on cooperative control of surface vessel net-
works has grown overwhelmingly over the past few years since it
has many applications in practice such as reconnaissance, marine
search and rescue missions, and mine clearance, to name a few.
Various approaches to cooperative control have been proposed,
for example, using leader-follower strategy [11, 12], behavior-
based method [13, 14] and virtual structure approach [15, 16]. In
particular, several formation control approaches were proposed
for underactuated surface vessel networks. In [17], a sliding
mode formation control design was proposed for underactuated
surface vessel networks. However, it is assumed that in [17] the
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trajectory of the leader agent can be obtained in real-time by all
the group members of the network, which is not a practical as-
sumption in a distributed network structure. In [18, 19], coop-
erative control protocols were designed for underactuated sur-
face vessels to achieve static formation and formation-tracking
tasks, respectively. However, in these control designs, agents
sense their positions with respect to the global coordinate sys-
tem and interactions are not necessarily required because the de-
sired formation can be achieved by position control of individual
agents. In [20], a finite-time formation control protocol was pro-
posed for surface vessels using sliding mode technique. How-
ever the proposed control protocol is a three-dimensional vec-
tor, which is difficult to implement for underactuated systems in
practice. In [21], cooperative control laws were presented for
underactuated vessels with limited sensing ranges to perform a
desired formation, and guarantee no collisions between the ves-
sels. However, in this design, the control laws also require the
global position measurements of the follower vessels.

Unlike centralized controlled where every agent must have
global information and awareness, in decentralized control, each
agent can only obtain the local relative position information be-
tween the agent itself and its neighbors. Therefore, control de-
sign using the local relative position information is more reliable.
In this paper, we present a novel leader-follower formation track-
ing framework for networks of underactuated surface vessels
without measurements of global positions. By exploiting the cas-
cade structure of the vessel model, a transformation is proposed
to reduce the order of error dynamics. Then, a sliding mode con-
trol design is employed to stabilize the reduced-order error dy-
namics and consequently uniform global asymptotic stability is
established for the closed-loop system under bounded uncertain-
ties. Numerical simulations are presented to illustrate the effec-
tiveness and robustness of the proposed approaches. This work
represents the first fully decentralized approach to formation con-
trol of networks of underactuated surface vessels.

PROBLEM FORMULATION
Surface Vessel Model

Consider a network of N + 1 homogeneous planar under-
actuated surface vessels where the vessels are numbered i =
0,1, . . . ,N with 0 representing a real or virtual leader, and
1, . . . ,N are the follower vessels. Each vessel considered in the
network is assumed to have only two actuators, which provide
surge control force and a yaw control moment and its heave, roll
and pitch displacements are neglected. The motion of a single
vessel i in the network is described by assigning a body-fixed ref-
erence frame {xbiybi} to its center of mass located at [xi,yi]

> ∈R2

with respect to a fixed inertial reference frame {XY} and yaw an-
gle θi ∈ R, as shown in Fig. 1. The vessel model is represented
by its nonholonomic kinematic relations and its equations of mo-

FIGURE 1: Top view of the underactuated surface vessel i.

tion as follows

ẋi = vxi cosθi− vyi sinθi

ẏi = vxi sinθi + vyi cosθi

θ̇i = ωi

v̇xi =
m22

m11
vyiωi−

d11

m11
vxi +δxi(t)+ τ1i

v̇yi =−
m11

m22
vxiωi−

d22

m22
vyi +δyi(t)

ω̇i =
m11−m22

m33
vxivyi−

d33

m33
ωi +δωi(t)+ τ2i,

(1)

where [vxi,vyi]
> ∈ R2 represent the velocity of the vessel center

of mass in the body-fixed frame {xbiybi} and ωi ∈R is its angular
velocity. The parameters mkk and dkk, k = 1,2,3 are the inertia
and damping parameters which are positive and assumed to be
constant. Note that for marine vehicle models m11 6= m22 due to
added mass effect. The terms δxi(t),δyi(t),δωi(t) represent the
unknown but bounded modeling uncertainties and disturbances,
i.e., |δxi(t)| ≤∆xi, |δyi(t)| ≤∆yi, |δωi(t)| ≤∆ωi, where ∆xi,∆yi,∆ωi
are known positive constants; τ1i and τ2i are the scaled control in-
puts representing the surge force and yaw moment, respectively.

Algebraic Graph Theory
We use graph theory to define the communication network.

Network topology of the N + 1 surface vessels is defined by
a directed graph G = (V ,E ) where V and E ⊆ V × V rep-
resent its sets of vertices and edges, respectively. There are
N + 1 nodes whose dynamics are described in (1). The set of
neighboring nodes with edges connected to node i is denoted by
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Ωi = {j | (j, i) ∈ E }. The edges represent communication be-
tween the nodes such that node j can obtain information from
node i for feedback control purposes, if j ∈Ωi. In order to incor-
porate a combination of neighboring feedback information from
neighboring nodes, we let wij ≥ 0 be a weighing factor for any
i, j ∈ V . These factors are selected such that ∑j∈Ωi wij = 1 if
(j, i) ∈ E and wij = 0, otherwise. We assume that there exists at
least one directed path starting from the leader to any other node
in the network and that the communication topology is time in-
variant. Furthermore, there are no loops in the graph and the
leader does not receive any communication from other nodes.

Feasible Reference Trajectories
The reference trajectory for all three pose states of sur-

face vessels cannot be arbitrarily selected due to underactuation.
Hence, we must define feasible reference trajectories relying on
the vessel model. Since we are considering formation control of
networks of homogeneous vessels, then the most important step
is to generate a feasible reference trajectory for the leader vessel
0, irrespective of it being real or virtual. Since tracking posi-
tion is essential in any surface vessel problem, then we assume
the leader must follow a smooth reference trajectory specified
by [x0(t),y0(t)]>. Then, as proposed in [22], the feasible ref-
erence trajectory for θ0(t) can be calculated by integrating the
nonholonomic constraint in (1) subject to the initial condition
θ0(0) = θ0,0:

v̇y0(t) =−
m11

m22
vx0(t)θ̇0(t)−

d22

m22
vy0(t), (2)

Equation (2) is a first order differential equation in θ0(t) where

vx0(t) = cosθ0(t)ẋ0(t)+ sinθ0(t)ẏ0(t)

vy0(t) =−sinθ0(t)ẋ0(t)+ cosθ0(t)ẏ0(t)

v̇y0(t) =−sinθ0(t)ẍ0(t)+ cosθ0(t)ÿ0(t)− vx0(t)θ̇0(t)

(3)

Note that if the leader is virtual, then [x0(t),y0(t)]> and θ0(t)
derived from (2) are sufficient in describing its motion. However,
if the leader is a real vessel, then the control law presented in [22]
may be employed to follow the reference trajectory.

As far as all the follower vessels are concerned, their feasi-
ble trajectories are dictated by the formation. For these agents,
the position trajectory is determined by the desired formation.
Since the leader is following a feasible trajectory, the followers
can track any position relative to their neighbors, while relative
orientations are dictated by those neighbors. For example, when
the overall formation is non-rotating, the vessel relative orienta-
tions must be zero.

ERROR DYNAMICS
Let us define the set `ij ∈ R3, i = 1, . . . ,N, j ∈Ωi of relative

poses of the agents that describes the desired formation of the
network. The desired formation is basically a geometric pattern
and, as explained in previous section, we set the third component
`3

ij = 0 to achieve feasible trajectory. Denoting the configuration
of agent i by qi = [xi,yi,θi]

>, the formation tracking errors can
be defined by

εij = qi−qj− `ij, ∀ i = 1, . . . ,N, ∀ j ∈Ωi, (4)

Next, we redefine the formation tracking errors for agents
i= 1, . . . ,N using the following transformation zi = [z1i,z2i,z3i]

>:

zi = R(θi)
> ( ˙̃qi +Λq̃i

)
, (5)

where q̃i := qi− ∑
j∈Ωi

wij
(
qj + `ij

)
, R(θi) is the orthogonal rota-

tion matrix

R(θi) :=

cosθi −sinθi 0
sinθi cosθi 0

0 0 1

 , (6)

and Λ = diag{λ1,λ2,λ3} > 0 is a diagonal positive definite ma-
trix.

Since R(θi) is orthogonal matrix, zi → 0 implies(
˙̃qi +Λq̃i

)
→ 0, which may be written as

˙̃qi =−Λq̃i +ζi(t), lim
t→∞

ζi(t) = 0, (7)

where ζi(t) = R(θi)zi. Since Λ > 0, then by the converging-
input-converging-state (CICS) property of stable linear systems
[23], we conclude that qi− ∑

j∈Ωi

wij
(
qj + `ij

)
→ 0 as t→∞. Since

this convergence holds for all i = 1, . . . ,N, we can conclude that
εij → 0, ∀ j ∈ Ωi [11]. Moreover, the formation error for all
agents in the network converge to zero [24].

The objective of the decentralized formation control design
is therefore to drive zi, i = 1, . . . ,N to zero asymptotically. The
error dynamic model in terms of zi is determined by taking the
time derivative of (5):

żi = J̇(θi)
> ( ˙̃qi +Λq̃i

)
+R(θi)

> ( ¨̃qi +Λ ˙̃qi
)

(8)

Substituting equations in (1) into (8), we derive the error dynamic
model in a simple reduced form

żi =

 ωiz2i
−ωiz1i

0

+
u1i

Ψi
u2i

+
δxi

δyi
δωi

 , (9)
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where we have used the feedback transformation

τ1i = ∑
j∈Ωi

wij
[
(v̇xj− vyjωj)cos(θi−θj)+(v̇yj + vxjωj)sin(θi−θj)

]
−λ1

[
vxi− ∑

j∈Ωi

wij
[
vxj cos(θi−θj)+ vyj sin(θi−θj)

]]

+

(
1− m22

m11

)
vyiωi +

d11

m11
vxi +u1i, (10)

τ2i =
1

aωi

[
−m11−m22

m33
vxivyi +

d33

m33
ωi

+ ∑
j∈Ωi

wijω̇j−λ3

(
ωi− ∑

j∈Ωi

wijωj

)
+u2i

]
, (11)

and Ψi is given as

Ψi = ∑
j∈Ωi

wij
[
(v̇xj− vyjωj)sin(θi−θj)− (v̇yj + vxjωj)cos(θi−θj)

]
+λ2

[
vyi− ∑

j∈Ωi

wij
[
−vxj sin(θi−θj)+ vyj cos(θi−θj)

]]

+

(
1− m11

m22

)
vxiωi−

d22

m22
vyi. (12)

Thus designing a control law for stabilizing the error dynamics
of vessel i requires not only relative position and orientation of
the neighboring agent(s) j but also velocities vxj,vyj,ωj and ac-
celerations v̇xj, v̇yj, ω̇j of agent j, which can typically be measured
onboard and communicated to agent i.

SLIDING MODE CONTROL DESIGN
The goal of decentralized formation control is to design the

inputs [u1i,u2i]
> that result in uniformly asymptotically stable er-

ror dynamics (9) for all follower agents i = 1, . . . ,N. Here, we
take advantage of the vessel model’s cascade structure in (1) us-
ing the transformed formation error (5) and the reduced three-
state error dynamics (9). Note that the error dynamics (9) is
structured such that the orientation error z3i is decoupled from the
positioning error [z1i,z2i]

> and thus can be independently con-
trolled.

Let us first design a sliding mode control law u2i to stabilize
z3i in the following form

u2i =−k2i sign(z3i). (13)

where k2i is a control gain. Define the Lyapunov function candi-
date as V1i(z3i) =

1
2 z2

3i and design u2i that makes its time deriva-

tive negative:

V̇1i = z3i [−k2i sign(z3i)+δωi]

≤ (−k2i +∆ωi) |z3i|< 0, k2i > ∆ωi.
(14)

Since the reaching condition to z3i = 0 is satisfied, it is implied
that the orientation error z3i converges to zero in a finite time that
is ≤ z3i(0)/k2i.

Now, let us consider the first two equations in (8) and design
u2i to stabilize the remaining error states (z1i,z2i). As a first step,
we define the sliding variable as

si(z1i,z2i, t) =−ωiz1i +Ψi + ciz2i, (15)

where ci > 0 is a control gain. Note that the sliding variable is
defined such that on the manifold si = 0,

ż2i =−ciz2i +δyi(t). (16)

Equation (16) implies that the zero dynamics on the sliding sur-
face is globally asymptotically stable and {si = 0} is a globally
invariant manifold as long as the unmatched uncertainty δyi(t) is
a vanishing perturbation with respect to z2i.

Next, define the Lyapunov function V2i(si) =
1
2 s2

i and take
its time derivative along (z1i,z2i) trajectories:

V̇2i = si

[
∂ si
∂ z1i

ż1i +
∂ si
∂ z2i

ż2i +
∂ si
∂ t

]
= si

[
∂ si
∂ z1i

(ωiz2i +u1i +δxi)−
∂ si
∂ z2i

(
ωiz1i−Ψi−δyi

)
+

∂ si
∂ t

]
.

(17)

Assuming that ∂ si/∂ z1i 6= 0, we can then define the equivalent
control law as

u1ie =−ωiz2i−
(

∂ si
∂ z1i

)−1 [
∂ si
∂ z2i

(−ωiz1i +Ψi)+
∂ si
∂ t

]
. (18)

Adding the discontinuous term to the equivalent control, the slid-
ing mode control law is derived as

u1i = u1ie−
(

∂ si
∂ z1i

)−1

k1i sign(si) (19)

To determine the stability condition with respect to bounded un-
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certainties, we substitute from (19) into (17):

V̇2i = si

[
−k1i sign(si)+

∂ si
∂ z1i

δxi +
∂ si
∂ z2i

δyi

]
≤ |si|

[
−k1i +

∣∣∣∣ ∂ si
∂ z1i

∣∣∣∣∆xi +

∣∣∣∣ ∂ si
∂ z2i

∣∣∣∣∆yi

]
.

(20)

Thus the robustness gain k1i must be selected such that

k1i >

∣∣∣∣ ∂ si
∂ z1i

∣∣∣∣∆xi +

∣∣∣∣ ∂ si
∂ z2i

∣∣∣∣∆yi (21)

to satisfy the reaching condition and guaranteeing that all trajec-
tories of (z1i,z2i) converge to the sliding surface in finite time.

The uniformly asymptotic stability of system (16) can be
established under the assumption that the unmatched disturbance
δyi(t) satisfies the vanishing perturbation condition with respect
to z2i, i.e., |δyi(t)| ≤ κi|z2i|, where κi is a positive constant [25].
Note that, it is possible to reject non-vanishing and unmatched
uncertainties using integral sliding manifold design [26]. It is
important to note that, the controllers (10), (11), (13) and (19)
are completely decentralized and independent of global position
measurements.

It should be noted that the singularity condition ∂ si/∂ z1i 6= 0
implies that ωi 6= 0. When ωi = 0, the (z1i,z2i)-dynamics are un-
coupled; i.e. z2i cannot be controlled by u2i. Under this con-
dition, we may stabilize z1i only by defining si = z1i and z2i
will remain uncontrolled. From a practical viewpoint, this case
happens only when the forward and lateral motions are uncou-
pled which occurs in a straight line motion. In such cases, we
may use a hybrid control law where the controller in (19) is re-
placed with simple control law derived by selecting si = z1i, that
is u1i =−k1i sign(si) where k1i > ∆xi.

SIMULATION RESULTS
In this section, numerical simulation of a network of surface

vessels is presented to validate the performance of the proposed
formation control protocol. Consider a group of five homo-
geneous underactuated surface vessels with the communication
topology graph shown in Fig. 2. Since agent 4 has two communi-
cation edges, we set the weighting coefficients w42 = w43 = 0.5.
While, the remaining coefficients are all set to 1. The desired
time-invariant formation shape of the four follower vessels is a
square that moves along with the leader vessel 0 located at the
center of the square. The length of the square sides is 6 m.

In the simulation, the leader is commanded to follow a circle
of radius 0.7 m centered at (0.2 m,1 m) and at a constant speed
of 1.25 rad/s.

The model parameters of the vessels, initial conditions of the
five vessels, and the control gains are given as follows:

m11 = 1.612 kg, m22 = 1.982 kg, m33 = 1.035 kg.m2

d11 = 1.436 kg/s, d22 = 12.61 kg/s, d33 = 0.864 kg.m2/s

q0(0) = [0,0,0]>, q1(0) = [0,−1 m,π/2]>,

q2(0) = [−2 m,2 m,0]>, q3(0) = [3 m,0,0]>,

q4(0) = [−2 m,0,π]>, λ1 = λ2 = λ3 = 2
k1i = k2i = ci = 1, i = 1,2,3,4

The formation errors of the group of vessels are shown in
Fig. 3 and the formation path is shown in Fig. 4. As shown in
Fig. 3, the errors converge after approximately 8 seconds. The
formation of the four follower vessels is also illustrated in Fig. 4,
demonstrating that the desired square shape has been achieved.

43

21 0

FIGURE 2: Communication topology graph of the five underac-
tuated surface vessels in the network

CONCLUSION
In this work, we presented a decentralized formation control

approach for underactuated surface vessels with a given commu-
nication topology. The approach was based on leader-follower
model relying on relative coordination and thus without requir-
ing any global position measurements. Using the cascade struc-
ture of vehicle dynamic model, a transformation was proposed
to reduce the order of error dynamics, and then a nonlinear dis-
tributed sliding mode design was employed to stabilize the error
dynamics. The control law did not require linearization or sim-
plification of the rigid body dynamics and is shown to be robust
with respect to bounded uncertainties and disturbances. An ex-
ample was numerically simulated to illustrate the effectiveness
and robustness of the proposed framework. Our future research
will concentrate on time-varying formation control of heteroge-
neous surface vessels and other forms of vehicles.
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