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Abstract— We extend source seeking algorithms, in the ab-
sence of position and velocity measurements, and with tuning
of the surge input, from velocity-actuated (unicycle) kinematic
models to force-actuated generic Euler-Lagrange dynamic un-
deractuated models. In the design and analysis, we employ
a symmetric product approximation, averaging, passivity, and
partial-state stability theory. The proposed control law requires
only real-time measurement of the source signal at the current
position of the vehicle and ensures semi-global practical uniform
asymptotic stability (SPUAS) with respect to the linear motion
coordinates for the closed-loop system. The performance of
our source seeker with surge force tuning is illustrated with
numerical simulations of an underactuated surface vessel.

I. INTRODUCTION

Extremum seeking (ES) is a real-time model-free op-
timization approach that is applicable not only to static
maps but also, somewhat uniquely, to dynamical systems
[1]. Following the development of the ES convergence
guarantees by [2], and their semi-global extension by [3],
ES has been a flourishing research area, especially in the
domain of autonomous vehicle control for finding sources
of signals (electromagnetic, optical, chemical, etc.), distance-
based localization, distance-based formation control, etc. In
particular, GPS and inertial navigation system (INS) signals
are not always available in practice. Hence, autonomous
vehicles that operate without GPS or INS benefit from source
seeking capabilities.

Most real vehicles are underactuated, where by underac-
tuated it is commonly meant that the number of independent
actuators of a vehicle is strictly lower than the number of the
vehicle’s degrees of freedom (DOF), as defined by the di-
mension of the configuration space [4]. As a consequence of
underactuation, the control design for these vehicles is much
more difficult than for fully-actuated vehicles [5]. Specifi-
cally, fully-actuated mechanical system models (comprising
the kinematic and dynamic equations) can be feedback lin-
earized into double-integrator dynamics. This is not possible
for underactuated vehicles. Furthermore, unlike (first-order)
nonholonomic systems, where nonintegrable constraints are
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imposed on system velocities (such as in the unicycle),
underactuated dynamic vehicle models describe the motions
constrained by nonintegrable acceleration constraints, and
thus, ES algorithms developed for first-order systems cannot
be directly applied to underactuated vehicles.

Given the rich variety of model types, spatial dimensions,
and input tuning options for autonomous vehicles, numerous
approaches for source seeking have emerged in the literature.
We categorize the existing results into classical averaging-
based [6], [7], Lie bracket averaging-based [8], [9], and
symmetric product approximation-based seekers [10], [11]
according to different types of averaging techniques. Gener-
ally speaking, the classical averaging methods and the Lie
bracket approximation approaches cannot be applied directly
to a generic second-order (force-controlled) vehicle model—
Sect. 3 in [6] illustrates the need for additional compensation
and analysis but considers only a fully actuated vehicle.

The symmetric product approximation approach, which
[12], [13] introduced for vibrational control of mechanical
systems, has enabled considerable further advances in force-
actuated source seeking. The symmetric product approxi-
mation was first employed in source seeking with a force-
controlled unicycle in [10] but assuming the availability of
velocity measurements. The requirement of velocity mea-
surement was removed by [11]. While these innovative works
are the first to employ symmetric product approximation for
source seeking, their model of angular motion is simplified.
Recently, the symmetric product approximation-based ES
algorithm was generalized to a class of affine connection
mechanical control systems in [14]. In an alternative pur-
suit by [15], for fully-actuated dissipation-free vehicles, a
symmetric product approximation-based source seeker with
a phase-lead compensator injects damping into the system
to achieve convergence. In addition, the method applies to
systems on Lie groups including two- and three-dimensional
vehicle models.

In this paper, we develop a novel source seeking strategy
for generic force-controlled planar underactuated vehicles.
We prove that the trajectories of a class of underactuated
mechanical systems can be approximated by the trajectories
of corresponding symmetric product systems. Unlike the
strategies presented in [6], [15] for fully-actuated vehicles
(integrators), the proposed approach can be applied to under-
actuated vehicles, including marine surface vessels, planar
underwater vehicles, etc. The seeking scheme we design
does not require any position or velocity measurements. It
requires only real-time measurements of the source signal
at the current position of the vehicle, and ensures the semi-
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global practical uniform asymptotic stability (SPUAS) with
respect to the linear motion coordinates for the closed-
loop systems. The structure of the proposed controller is
exceptionally simple and easy to implement: the measured
output is multiplied by a periodic signal and fed into the
surge force.

Notations. Let R𝑛 denote the 𝑛-dimensional real vector
space; R≥0 the set of all non-negative real numbers; | · |
the Euclidean norm of vectors in R𝑛. The gradient of a
continuously differentiable function 𝑓 :R𝑛 →R is denoted by
∇ 𝑓 (𝑥) B

[
𝜕 𝑓 (𝑥)
𝜕𝑥1

, . . . ,
𝜕 𝑓 (𝑥)
𝜕𝑥𝑛

]⊤
. For real matrices 𝐴 ∈ R𝑛×𝑚,

we use the matrix norm | |𝐴| | = sup{|𝐴𝑥 | : |𝑥 | = 1}. For
any constant 𝑟 > 0, we use the notation B̄𝑛

𝑟 B {𝑥 ∈ R𝑛 :
|𝑥 | ≤ 𝑟} to denote a ball of radius 𝑟 in R𝑛. For two
vector fields 𝑓 , 𝑔 : R×R𝑛 → R𝑛, the Lie bracket is denoted
by (ad𝑔 𝑓 ) (𝑡, 𝑥) = [𝑔, 𝑓 ] (𝑡, 𝑥)B 𝜕 𝑓 (𝑡 ,𝑥)

𝜕𝑥
𝑔(𝑡, 𝑥)− 𝜕𝑔 (𝑡 ,𝑥)

𝜕𝑥
𝑓 (𝑡, 𝑥),

and ad𝑘
𝑔 𝑓 B ad𝑘−1

𝑔 (ad𝑔 𝑓 ).

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Model of Planar Underactuated Vehicles

A generic planar underactuated vehicle can be modeled
as a 3-DOF planar rigid body with two independent control
inputs. Let F𝑠 denote the fixed inertial frame attached to the
ground, and F𝑏 the body-fixed frame attached to the center
of mass of the vehicle. The position of the vehicle in F𝑠

is described by (𝑥, 𝑦), and the orientation of the vehicle is
represented by 𝜃, as shown in Fig 1. The equations of motion
of the planar underactuated vehicle are given by [5]

¤𝑞 = 𝐽 (𝑞)𝑣, (1a)
𝑀 ¤𝑣 +𝐶 (𝑣)𝑣 +𝐷𝑣 = 𝐺𝑢, (1b)

where 𝑞 = [𝑥, 𝑦, 𝜃]⊤ ∈ R3 is the configuration of the vehi-
cle; 𝑣 = [𝑣𝑥 , 𝑣𝑦 ,𝜔]⊤ ∈ R3 is the generalized velocity vector
consisting of the linear velocity (𝑣𝑥 , 𝑣𝑦) in the body-fixed
frame and the angular velocity 𝜔; 𝑢 = [𝑢1, 𝑢2]⊤ ∈ R2 is the
control input vector; 𝐽 (𝑞) is the kinematic transformation
matrix given by

𝐽 (𝑞) =

cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

 ; (2)

𝑀 = diag {𝑚11,𝑚22,𝑚33} > 0 is the inertia matrix; 𝐶 (𝑣) =
−𝐶 (𝑣)⊤ the Coriolis matrix. The components of vector
𝐶 (𝑣)𝑣 are homogeneous polynomials in (𝑣𝑥 , 𝑣𝑦 ,𝜔) of degree
2 [4]. We assume that the damping matrix 𝐷 is positive
definite and constant, which implies that the damping force
is proportional to the velocity. We also assume that the surge
force and the yaw torque are the two independent control
inputs, and accordingly, the input matrix 𝐺 is given by

𝐺 =


1 0
0 0
0 1

 . (3)

The system (1a)-(1b) can model a wide class of planar under-
actuated vehicles such as marine surface vessels, underwater
vehicles, etc.

Fig. 1. Top view of the planar underactuated vehicle.

B. Problem Statement

Assume that the position-dependent nonlinear cost func-
tion 𝜌 :R2 →R≥0 is smooth and has a global extremum, i.e.,
there exists a unique (𝑥★, 𝑦★) ∈ R2 such that

∇𝜌(𝑥★, 𝑦★) = 0 and ∇𝜌(𝑥, 𝑦) ≠ 0,∀(𝑥, 𝑦) ≠ (𝑥★, 𝑦★). (4)

In applications, 𝜌(·) may represent the distance between the
vehicle and a source, or the strength of a certain (electro-
magnetic, optical, etc.) signal. Without loss of generality, we
assume that (𝑥★, 𝑦★) is the minimum of the function 𝜌(·)
and the vehicle can measure the value of 𝜌(𝑥(𝑡), 𝑦(𝑡)) in real
time. Note that both the extremum (𝑥★, 𝑦★) and the gradient
∇𝜌 are unknown. Given any constant 𝜀 > 0, the objective is
to develop a feedback controller to steer the vehicle without
position and velocity measurements such that

lim
𝑡→∞

| (𝑥(𝑡), 𝑦(𝑡)) − (𝑥★, 𝑦★) | ≤ 𝜀. (5)

C. Shifted Passivity

In the existing literature, there are generally two types
of source seeking schemes for vehicle systems: 1) tuning
the forward motion of the vehicle by the ES loop while
keeping the angular speed constant (e.g., [7], [8], [10]), and
2) tuning the angular motion by the ES loop while keeping
the forward velocity constant (e.g., [9]). In either case, the
desired (linear/angular) velocity component is not zero, but
instead has a steady-state value corresponding to a non-
zero constant input. We formulate this property from the
viewpoint of shifted passivity.

Consider the system (1a)-(1b) with the output 𝜂 B 𝐺⊤𝑣.
Define the steady-state set

E B {(𝑣,𝑢) ∈ R3 ×R2 : 𝐶 (𝑣)𝑣 +𝐷𝑣−𝐺𝑢 = 0}. (6)

Fix (𝑣∗, 𝑢∗) ∈ E and the steady-state output 𝜂∗ B 𝐺⊤𝑣∗.
Definition 1 (Shifted passivity): The system (1a)-(1b) is

said to be shifted passive if the input-output mapping (𝑢 −
𝑢∗) ↦→ (𝜂−𝜂∗) is passive, i.e., there exists a storage function
H : R3 → R≥0 such that for all (𝑣,𝑢) ∈ R3 ×R2,

¤H B (∇H (𝑣))⊤ ¤𝑣 ≤ (𝑢−𝑢∗)⊤ (𝜂−𝜂∗). (7)
Proposition 1: Consider the system (1a)-(1b) with the

steady-state input 𝑢∗ = [0, 𝑐]⊤, where 𝑐 > 0 is a constant.
Then, there exists 𝑐 > 0 such that for all 𝑐 ∈ (0, 𝑐), the system
(1a)-(1b) is shifted passive.
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Proof: Fix the input 𝑢∗ = [0, 𝑐]⊤, and the corresponding
steady-state velocity and output are 𝑣∗ = [0,0,𝜔∗]⊤ and 𝜂∗ =
[0,𝜔∗]⊤, respectively. Let the storage function be H(𝑣) =
1
2 (𝑣−𝑣

∗)⊤𝑀 (𝑣−𝑣∗). Then, the time derivative of H(𝑣) along
the trajectories of (1a)-(1b) is given by

¤H = (𝑣− 𝑣∗)⊤ [𝐺 (𝑢−𝑢∗) −𝐶 (𝑣)𝑣−𝐷𝑣 +𝐺𝑢∗]
= (𝜂−𝜂∗)⊤ (𝑢−𝑢∗) − (𝑣− 𝑣∗)⊤ [𝐶 (𝑣)𝑣 +𝐷𝑣−𝐺𝑢∗]
= (𝜂−𝜂∗)⊤ (𝑢−𝑢∗) − (𝑣− 𝑣∗)⊤𝐷 (𝑣− 𝑣∗)
− (𝑣− 𝑣∗)⊤ [𝐶 (𝑣) −𝐶 (𝑣∗)] 𝑣∗, (8)

where we used (1b), and added and subtracted the term 𝐺𝑢∗

in the first identity, added and subtracted the term (𝐶 (𝑣) +
𝐷)𝑣∗ in the second identity, and used 𝐺𝑢∗ =𝐶 (𝑣∗)𝑣∗+𝐷𝑣∗ in
the third identity. Let us denote J (𝑣) B 𝐶 (𝑣)𝑣∗ +𝐷𝑣. Then,
from (8) we have

¤H = (𝜂−𝜂∗)⊤ (𝑢−𝑢∗) − (𝑣− 𝑣∗)⊤ [J (𝑣) −J (𝑣∗)] . (9)

It follows from the homogeneity of 𝐶 (𝑣)𝑣 that for all
𝑣 ∈ R3, | |𝜕 [𝐶 (𝑣)𝑒3] /𝜕𝑣 | | is bounded, where 𝑒3 = [0,0,1]⊤.
Thus, we can always choose 𝜔∗ small enough such that
𝜕 [𝐶 (𝑣)𝑣∗] /𝜕𝑣+ [𝜕 [𝐶 (𝑣)𝑣∗] /𝜕𝑣]⊤ ≤ 2𝐷, which implies that
(𝜕J (𝑣)/𝜕𝑣) + (𝜕J (𝑣)/𝜕𝑣)⊤ ≥ 0 for all 𝑣 ∈ R3. Therefore,
the map J (·) is monotone, and correspondingly, (𝑣 −
𝑣∗)⊤ [J (𝑣) −J (𝑣∗)] ≥ 0, which completes the proof.

D. Partial-State Practical Stability

Consider the nonlinear interconnected system

¤𝑥1 = 𝑓1 (𝑥1, 𝑥2), 𝑥1 (𝑡0) = 𝑥10, 𝑡 ≥ 𝑡0, (10)
¤𝑥2 = 𝑓2 (𝑥1, 𝑥2), 𝑥2 (𝑡0) = 𝑥20, (11)

where 𝑓1 : R𝑛1 × R𝑛2 → R𝑛1 is such that, for every 𝑥2 ∈
R𝑛2 , 𝑓1 (0, 𝑥2) = 0 and 𝑓1 (𝑥1, 𝑥2) is locally Lipschitz in 𝑥1
uniformly in 𝑥2; 𝑓2 : R𝑛1 ×R𝑛2 → R𝑛2 is such that for every
𝑥1 ∈ R𝑛1 , 𝑓2 (𝑥1, 𝑥2) is locally Lipschitz in 𝑥2 uniformly in 𝑥1.
Let 𝑥1 (·) B 𝑥1 (·, 𝑥10, 𝑥20) and 𝑥2 (·) B 𝑥2 (·, 𝑥10, 𝑥20) denote
the solution of the initial value problem (10)-(11).We define
the partial-state stability as stability with respect to 𝑥1 for
the interconnected system (10)-(11), which is also referred
to as “partial stability” in the literature [16].

Definition 2 (P-UGAS): The system (10)-(11) is globally
asymptotically stable (GAS) with respect to 𝑥1 uniformly in
𝑥20 if the following conditions are satisfied:
1) Partial-State Uniform Stability (P-US): For each 𝜀 > 0,

there exists 𝛿(𝜀) such that

|𝑥10 | ≤ 𝛿(𝜀) =⇒ |𝑥1 (𝑡) | ≤ 𝜀, ∀𝑡 ≥ 0, ∀𝑥20 ∈ R𝑛2 .

2) Partial-State Uniform Global Boundedness (P-UGB): For
each 𝑟 > 0, there exists 𝑅(𝑟) such that

|𝑥10 | ≤ 𝑟 =⇒ |𝑥1 (𝑡) | ≤ 𝑅(𝑟), ∀𝑡 ≥ 0, ∀𝑥20 ∈ R𝑛2 .

3) Partial-State Uniform Global Attractivity (P-UGA): For
each 𝑟 > 0, for each 𝜎 > 0, there exists 𝑇 (𝑟,𝜎) such that

|𝑥10 | ≤ 𝑟 =⇒ |𝑥1 (𝑡) | ≤ 𝜎, ∀𝑡 ≥ 𝑇 (𝑟,𝜎), ∀𝑥20 ∈ R𝑛2 .

We present Lyapunov conditions for P-UG(A)S of
(10)-(11). Given a function 𝑉 (𝑥1, 𝑥2), define ¤𝑉 (𝑥1, 𝑥2) B

(𝜕𝑉/𝜕𝑥) 𝑓 (𝑥1, 𝑥2), where 𝑥 B [𝑥⊤1 , 𝑥
⊤
2 ]

⊤ and 𝑓 (𝑥1, 𝑥2) B
[ 𝑓1 (𝑥1, 𝑥2)⊤, 𝑓2 (𝑥1, 𝑥2)⊤]⊤.

Theorem 1 ( [17]): Consider the interconnected system
(10)-(11). If there exist functions 𝑉 : R𝑛1 ×R𝑛2 → R≥0 of
class 𝐶1, class-K∞ functions 𝛼1, 𝛼2 such that for all (𝑥1, 𝑥2) ∈
R𝑛1 ×R𝑛2 ,

𝛼1 ( |𝑥1 |) ≤ 𝑉 (𝑥1, 𝑥2) ≤ 𝛼2 ( |𝑥1 |), (12)
¤𝑉 (𝑥1, 𝑥2) ≤ 0, (13)

then the system (10)-(11) is US and UGB with respect to
𝑥1 uniformly in 𝑥20. Furthermore, if exists a positive definite
function 𝛼3 such that

¤𝑉 (𝑥1, 𝑥2) ≤ −𝛼3 ( |𝑥1 |), (14)

then the system (10)-(11) is UGAS with respect to 𝑥1
uniformly in 𝑥20.

Next, we define partial-state practical stability for inter-
connected systems that depends on a small parameter 𝜀 > 0,

¤𝑥1 = 𝑓 𝜀1 (𝑡, 𝑥1, 𝑥2), 𝑥𝜀1 (𝑡0) = 𝑥10, 𝑡 ≥ 𝑡0, (15)
¤𝑥2 = 𝑓 𝜀2 (𝑡, 𝑥1, 𝑥2), 𝑥𝜀2 (𝑡0) = 𝑥20. (16)

Let 𝑥𝜀1 (·) B 𝑥𝜀1 (·, 𝑡0, 𝑥10, 𝑥20) and 𝑥𝜀2 (·) B 𝑥𝜀2 (·, 𝑡0, 𝑥10, 𝑥20)
denote the solution of the initial value problem (15)-(16).

Definition 3 (P-SPUAS): The system (15)-(16) said to be
semi-globally practically asymptotically stable (SPAS) with
respect to 𝑥1 uniformly in (𝑡0, 𝑥20) if for every compact set
B̄𝑛2
𝑟 ⊂ R𝑛2 , the following conditions are satisfied:

1) For every 𝑐2 > 0, there exists 𝑐1 and 𝜀(𝑟) > 0 such that
for all (𝑡0, 𝑥20) ∈ R≥0 × B̄𝑛2

𝑟 and for all 𝜀 ∈ (0, 𝜀),

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡) | ≤ 𝑐2, ∀𝑡 ≥ 𝑡0.

2) For every 𝑐1 > 0, there exists 𝑐2 and 𝜀(𝑟) > 0 such that
for all (𝑡0, 𝑥20) ∈ R≥0 × B̄𝑛2

𝑟 and for all 𝜀 ∈ (0, 𝜀),

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡) | ≤ 𝑐2, ∀𝑡 ≥ 𝑡0.

3) For all 𝑐1 > 0, 𝑐2 > 0, there exists 𝑇 (𝑐1, 𝑐2) and 𝜀(𝑟) > 0
such that for all (𝑡0, 𝑥20) ∈ R≥0×B̄𝑛2

𝑟 and for all 𝜀 ∈ (0, 𝜀),

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡) | ≤ 𝑐2, ∀𝑡 ≥ 𝑡0 +𝑇 (𝑐1, 𝑐2).
Definition 4 (Partial Converging Trajectories Property):

The systems (10)-(11) and (15)-(16) are said to satisfy the
partial converging trajectories property if for every 𝑇 > 0,
for every compact set 𝐾 ⊂ R𝑛1 ×R𝑛2 , and for every 𝑑 > 0,
there exists 𝜀∗ such that for all 𝑡0 ≥ 0, for all (𝑥10, 𝑥20) ∈ 𝐾
and for all 𝜀 ∈ (0, 𝜀∗),

|𝑥𝜀1 (𝑡) − 𝑥1 (𝑡) | < 𝑑, ∀𝑡 ∈ [𝑡0, 𝑡0 +𝑇] . (17)
Proposition 2: Assume that for the system (10)-(11), the

flow (𝑥1 (·), 𝑥2 (·)) is forward complete, and that the systems
(10)-(11) and (15)-(16) satisfy the partial converging tra-
jectories property. If (10)-(11) is GAS with respect to 𝑥1
uniformly in 𝑥20, then (15)-(16) is SPAS with respect to 𝑥1
uniformly in (𝑡0, 𝑥20).
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III. SYMMETRIC PRODUCT APPROXIMATIONS

Consider the system (1a)-(1b). Let the input vector be

𝑢 = 𝑏0 +
1
𝜀

𝑚∑︁
𝑖=1
𝑏𝑖 (𝑞)𝑤𝑖

( 𝑡
𝜀

)
, (18)

where 𝜀 is a positive constant, 𝑚 is a positive integer, 𝑏0 =
[𝑏10, 𝑏20]⊤ is a constant vector, 𝑏𝑖 (𝑞) = [𝑏1𝑖 (𝑞), 𝑏2𝑖 (𝑞)]⊤,
and {𝑤𝑖 (𝑡)} are 𝑇-periodic functions satisfying∫ 𝑇

0
𝑤𝑖 (𝑠1)d𝑠1 = 0, 𝑖 = 1, . . . ,𝑚, (19)∫ 𝑇

0

∫ 𝑠2

0
𝑤𝑖 (𝑠1)d𝑠1d𝑠2 = 0, 𝑖 = 1, . . . ,𝑚. (20)

Then, (1a)-(1b) with the input vector (18) in time scale 𝜏 =
𝑡/𝜀 can be written as

d
d𝜏

[
𝑞

𝑣

]
= 𝜀

[
𝐽 (𝑞)𝑣

−𝑀−1 [𝐶 (𝑣)𝑣 +𝐷𝑣−𝐵0]

]
︸                             ︷︷                             ︸

f(𝑞,𝑣)

+


0
𝑚∑
𝑖=1
𝐵𝑖 (𝑞)𝑤𝑖 (𝜏)

︸               ︷︷               ︸
g(𝜏,𝑞)

,

(21)
where 𝐵0 = 𝐺𝑏0 and 𝐵𝑖 (𝑞) = 𝑀−1𝐺𝑏𝑖 (𝑞) for 𝑖 = 1, . . . ,𝑚.
Denote f2 (𝑣) =−𝑀−1 [𝐶 (𝑣)𝑣+𝐷𝑣−𝐵0]. The symmetric prod-
uct of two vector fields 𝑋,𝑌 : R3 → R3 corresponding to the
system (1a)-(1b) is defined as

⟨𝑋 :𝑌⟩ = 𝜕𝑋
𝜕𝑞

𝐽 (𝑞)𝑌 (𝑞)+ 𝜕𝑌
𝜕𝑞
𝐽 (𝑞)𝑋 (𝑞)−

(
𝜕

𝜕𝑣

(
𝜕f2
𝜕𝑣

𝑋 (𝑞)
))
𝑌 (𝑞).
(22)

In the next theorem, we show that the trajectories of sys-
tem (1a)-(1b) with the input vector (18) can be approximated
by the trajectories of the symmetric product system

¤̄𝑞 = 𝐽 (𝑞)�̄�, (23a)

𝑀 ¤̄𝑣 +𝐶 (�̄�)�̄� +𝐷�̄� = 𝐵0 −𝑀
𝑚∑︁

𝑖, 𝑗=1
Λ𝑖 𝑗 ⟨𝐵𝑖 : 𝐵 𝑗⟩(𝑞), (23b)

where

Λ𝑖 𝑗 =
1

2𝑇

∫ 𝑇

0

(∫ 𝑠1

0
𝑤𝑖 (𝑠2)d𝑠2

) (∫ 𝑠1

0
𝑤 𝑗 (𝑠2)d𝑠2

)
d𝑠1. (24)

Define the time-varying vector field as

Ξ(𝑡, 𝑞) B
𝑚∑︁
𝑖=1

(∫ 𝑡

0
𝑤𝑖 (𝑠)d𝑠

)
𝐵𝑖 (𝑞). (25)

Theorem 2: Consider the system (1a)-(1b) with input vec-
tor (18) and the symmetric product system (23a)-(23b).
Assume that the initial conditions of the two systems are
the same. Denote the solutions of (1a)-(1b) and (23a)-(23b)
as (𝑞(𝑡), 𝑣(𝑡)) and (𝑞(𝑡), �̄�(𝑡)) for 𝑡 ≥ 0, respectively. If
the system (23a)-(23b) is GAS with respect to (𝑥, �̄�, �̄�𝑥 , �̄�𝑦)
uniformly in (𝜃 (0), �̄�(0)), then the system (1a)-(1b) is semi-
globally practically asymptotically stable (SPAS) with re-
spect to (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) uniformly in (𝜃 (0),𝜔(0)).

Proof: By the variation of constants formula in Ap-
pendix A, the pull back system of (21) is given by

d
d𝜏

[
𝑞

�̂�

]
= 𝜀F(𝜏, 𝑞, �̂�), (26)

where (𝑞(0), �̂�(0)) = (𝑞(0), 𝑣(0)) and

F(𝜏, 𝑞, 𝑣) = f(𝑞, 𝑣)

+
∞∑︁
𝑘=1

∫ 𝜏

0
· · ·

∫ 𝑠𝑘−1

0

(
adg(𝑠𝑘 ,𝑞) · · ·adg(𝑠1 ,𝑞) f(𝑞, 𝑣)

)
d𝑠𝑘 · · ·d𝑠1.

By direct calculations, we have

adg(𝑠1 ,𝑞) f(𝑞, 𝑣) =
𝑚∑︁
𝑖=1
𝑤𝑖 (𝑠1)


𝐽 (𝑞)𝐵𝑖 (𝑞)(

𝜕f2 (𝑣)
𝜕𝑣

)
𝐵𝑖 (𝑞) −

(
𝜕𝐵𝑖

𝜕𝑞

)
𝐽 (𝑞)𝑣

 ,
and

adg(𝑠2 ,𝑞)adg(𝑠1 ,𝑞) f(𝑞, 𝑣) = −
𝑚∑︁

𝑖, 𝑗=1
𝑤𝑖 (𝑠1)𝑤 𝑗 (𝑠2)

[
0

⟨𝐵𝑖 : 𝐵 𝑗⟩(𝑞)

]
.

Note that the symmetric product ⟨𝐵𝑖 : 𝐵 𝑗⟩(𝑞) is a vector
field depending only on 𝑞. Thus, the higher order terms
adg(𝑠𝑘 ,𝑞) · · ·adg(𝑠1 ,𝑞) f(𝑞, 𝑣) ≡ 0 for all 𝑘 ≥ 3. The pull back
vector field F(𝜏, 𝑞, 𝑣) is given by

F =f(𝑞, 𝑣) +
𝑚∑︁
𝑖=1


𝐽 (𝑞)𝐵𝑖 (𝑞)(

𝜕f2
𝜕𝑣

)
𝐵𝑖 −

(
𝜕𝐵𝑖

𝜕𝑞

)
𝐽 (𝑞)𝑣


∫ 𝜏

0
𝑤𝑖 (𝑠1)d𝑠1

−
𝑚∑︁

𝑖, 𝑗=1

[
0

⟨𝐵𝑖 : 𝐵 𝑗⟩

] ∫ 𝜏

0

∫ 𝑠1

0
𝑤𝑖 (𝑠1)𝑤 𝑗 (𝑠2)d𝑠2d𝑠1. (27)

Denote the solution of the pull back system (26) by
(𝑞(𝜏), �̂�(𝜏)). Then, it follows from Theorem 4 that the
solution to (21) is given by the initial value problem

d
d𝜏

[
𝑞

𝑣

]
=


0

𝑚∑
𝑖=1
𝐵𝑖 (𝑞)𝑤𝑖 (𝜏)

 ,
[
𝑞(0)
𝑣(0)

]
=

[
𝑞(𝜏)
�̂�(𝜏)

]
. (28)

Therefore, we have

𝑞(𝜏) ≡ 𝑞(0) ≡ 𝑞(𝜏), (29)
𝑣(𝜏) = �̂�(𝜏) +Ξ(𝜏, 𝑞(𝜏)). (30)

The pull back system (26) is in the standard averaging form.
Consider the averaged system

d
d𝜏

[
𝑞

�̄�

]
=
𝜀

𝑇

∫ 𝑇

0
F(𝜏, 𝑞, �̄�)d𝜏, (31)

and denote the solution by (𝑞(𝑡), �̄�(𝑡)). It follows from (20),
the symmetry of symmetric product, and integration by parts,
that the averaged system (31) in time scale 𝑡 = 𝜀𝜏 is the
symmetric product system (23a)-(23b).

According to the averaging theorem [18, Theorem 10.4],
there exists 𝜀∗ > 0 such that for all 0 < 𝜀 < 𝜀∗,

|𝑞(𝑡) − 𝑞(𝑡) | =𝑂 (𝜀), and |�̂�(𝑡) − �̄�(𝑡) | =𝑂 (𝜀) (32)

as 𝜀→ 0 on time scale 1. We recover the partial converging
trajectories property by substituting (29)-(30) into (32). Fi-
nally, it follows directly from Proposition 2 that the system
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Euler-Lagrangian System (1a)-(1b)

Fig. 2. Source seeking scheme for planar vehicle system (1a)-(1b).

(1a)-(1b) is SPAS with respect to (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) uniformly in
(𝜃 (0),𝜔(0)), which completes the proof.

Remark 1: In Theorem 2, instead of requiring UGAS
of the symmetric product system as in standard averaging
theory [19], we only assume (23a)-(23b) to be P-UGAS
with respect to (𝑥, �̄�, �̄�𝑥 , �̄�𝑦), while the remaining part of
the state (𝜃 (𝑡), �̄�(𝑡)) does not necessarily converge to (0,0).
Correspondingly, in the source seeking design in the next sec-
tion, the approximation in the linear motion | (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦) −
(𝑥★, 𝑦★,0,0) | =𝑂 (𝜀) is valid for all 𝑡 ≥ 0, while the angular
motion of the vehicle can be persistently exciting.

IV. SOURCE SEEKING FOR UNDERACTUATED VEHICLES

A. Source Seeking Scheme

We propose a source seeking scheme for the planar vehicle
system (1a)-(1b) as it is depicted in Fig. 2. In the proposed
scheme, the surge force of the vehicle is tuned by the
ES loop, while the yaw torque keeps a certain constant
value. The proposed surge force tuning based source seeking
scheme is similar to the methods in [7], [8], [11], but
will be analyzed in the symmetric product approximation
framework.

The control law in Fig. 2 is given by

𝑢1 =
𝑘

𝜀
cos

( 𝑡
𝜀

)
𝜌(𝑥, 𝑦), (33)

𝑢2 = 𝑐, (34)

where 𝜀, 𝑘 , and 𝑐 are positive parameters. The gain 𝑘 is used
to tune the transient performance. The small parameter 𝜀 in-
troduces the “high-magnitude high-frequency force”, which
leads to the symmetric product approximation. The constant
torque 𝑐 maintains a persistently exciting angular motion of
the vehicle, which is necessary to establish convergence for
underactuated vehicle systems.

B. Stability Analysis

Theorem 3: Consider the system (1a)-(1b) with inputs
(33)-(34). Suppose that the cost function 𝜌(𝑥, 𝑦) ≥ 0 satisfies
(4). Then, there exists 𝑐 > 0 and for any 𝑐 ∈ (0, 𝑐), there
exists 𝜀 > 0 such that for the given 𝑐 and any 𝜀 ∈ (0, 𝜀)
and 𝑘 > 0, the closed-loop system is SPAS with respect to
(𝑥− 𝑥★, 𝑦− 𝑦★, 𝑣𝑥 , 𝑣𝑦) uniformly in (𝜃 (0),𝜔(0)).

Proof: Note that the control law (33)-(34) is in the form
of (18), where 𝑚 = 1, 𝑏0 = [0, 𝑐]⊤, 𝑏1 (𝑞) = [𝑘𝜌(𝑥, 𝑦),0]⊤,

(Unicycle model)

(Underactuated equation)

Symmetric product system (23a)-(23b)

Fig. 3. Feedback interconnection of the symmetric product system (23a)-
(23b).

and 𝑤1 (𝑡) = cos(𝑡). It can be verified that conditions (19)-
(20) hold for 𝑇 = 2𝜋. Thus, it follows from Theorem 2 that
the closed-loop system is SPAS with respect to (𝑥 − 𝑥★, 𝑦−
𝑦★, 𝑣𝑥 , 𝑣𝑦) uniformly in (𝜃 (0),𝜔(0)) if the corresponding
symmetric product system (23a)-(23b) is GAS with respect
to (𝑥−𝑥★, �̄�− 𝑦★, �̄�𝑥 , �̄�𝑦) uniformly in (𝜃 (0),𝜔(0)). Next, we
show that it is indeed the case.

By direct calculations, we have Λ11 = 1/4, and
the symmetric product is given by ⟨𝐵1 : 𝐵1⟩(𝑞) =

2(𝑚−1
11 𝑘)

2𝜌(𝑥, �̄�) [𝜌′𝑥 (𝑥, �̄�) cos(𝜃) + 𝜌′𝑦 (𝑥, �̄�) sin(𝜃),0,0]⊤,
where 𝜌′𝑥 (𝑥, 𝑦) B 𝜕𝜌(𝑥, 𝑦)/𝜕𝑥 and 𝜌′𝑦 (𝑥, 𝑦) B 𝜕𝜌(𝑥, 𝑦)/𝜕𝑦.
The constant torque 𝑐 is selected such that Proposition 1
holds, and then, the system (23a)-(23b) is shifted passive
under the steady-state input 𝑢∗ = 𝑏0. Denote 𝛼 = (𝑚−1

11 𝑘)
2/2

and 𝐶𝑖 (·) the 𝑖-th component of the vector −𝑀−1𝐶 (�̄�)�̄�.
The symmetric product system can be viewed as a feedback
interconnection of two subsystems, as shown in Fig. 3.

When the input �̄�𝑦 ≡ 0, the nominal system of the upper
subsystem is exact the unicycle model under a passive
feedback. We first prove the nominal system of the upper
subsystem (i.e., �̄�𝑦 ≡ 0) is P-UGAS. Let 𝑉1 (𝑥, �̄�, �̄�𝑥) = 1

2 �̄�
2
𝑥 +

𝛼
2 𝜌(𝑥, �̄�)

2, and along trajectories of the nominal system, we
have ¤𝑉1

��
nominal =− 𝑑11

𝑚11
�̄�2
𝑥 ≤ 0, which, according to Theorem

1, shows that the nominal system is US and UGB with
respect to (𝑥−𝑥★, �̄�−𝑦★, �̄�𝑥) uniformly in (𝜃 (0), �̄�(0)). Then,
consider the auxiliary function 𝑉2 = �̄�𝑥𝜌(𝑥, �̄�) (𝜌′𝑥 cos(𝜃) +
𝜌′𝑦 sin(𝜃)). Evaluating the time derivative of 𝑉2 along tra-
jectories of the nominal system on the set {�̄�𝑥 = 0}, we
have ¤𝑉2

��
nominal,�̄�𝑥=0 = −𝛼𝜌2 (𝜌′𝑥 cos(𝜃) + 𝜌′𝑦 sin(𝜃))2, which

is non-zero definite. It follows from Matrosov’ theorem
[5], [16] that the nominal system is UGAS with respect to
(𝑥− 𝑥★, �̄�− 𝑦★, �̄�𝑥) uniformly in (𝜃 (0), �̄�(0)).

Second, we prove that the upper subsystem is input-to-
output stable (IOS) by viewing �̄�𝑦 as input and (�̄�𝑥 , �̄�)
as output. Because the nominal part of the upper sub-
system is P-UGAS, for each 𝑟 > 0, there exists a con-
stant 𝛿𝑟 > 0 such that for all initial conditions start-
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ing in the ball centering at the equilibrium with ra-
dius 𝑟 , we have max{|𝜌′𝑥 cos(𝜃) + 𝜌′𝑦 sin(𝜃) |, |𝜌′𝑥 cos(𝜃) +
𝜌′𝑦 sin(𝜃) |2, |𝑐𝜌(𝜌′𝑥 sin(𝜃) − 𝜌′𝑦 cos(𝜃)) |/𝑑33, |𝜌(𝜌′′𝑥𝑥 cos(𝜃)2 +
2𝜌′′𝑥𝑦 sin(𝜃)) cos(𝜃) |} < 𝛿𝑟 . Let V𝑟 = 𝛽𝑟𝑉1 + 𝑉2, where
𝛽𝑟 > 0 is a constant to be determined. It follows from
Young’s inequality 𝑎𝑏 ≤ 𝑎2/(2𝜖) + (𝜖𝑏2)/2 that V𝑟 > 0 and
¤V𝑟

��
nominal ≤ −�̄�2

𝑥 − 𝛼
2 𝜌

2 (𝜌′𝑥 cos(𝜃) + 𝜌′𝑦 sin(𝜃))2 + �̄�𝑥𝛿𝑟 by
selecting 𝛽𝑟 > max

{
𝛿2
𝑟/𝛼,1+2𝑚11𝛿𝑟/𝑑11 + 𝑑11/(2𝛼𝑚11)

}
.

Then, taking time derivative of V𝑟 along trajectories of
the upper subsystem, and noting that the quadratic terms
−�̄�2

𝑥 − 𝛼
2 𝜌

2 (𝜌′𝑥 cos(𝜃) + 𝜌′𝑦 sin(𝜃))2 dominate ¤V𝑟

��
upper when

| (�̄�𝑥 , 𝜌(𝜌′𝑥 cos(𝜃) + 𝜌′𝑦 sin(𝜃))) | are large, we conclude that
the upper subsystem is IOS with input �̄�𝑦 and output (�̄�𝑥 , �̄�).

Due to the fact that the lower subsystem in Fig. 3 is a
stable linear system, it is also IOS by viewing (�̄�𝑥 , �̄�) as the
input and �̄�𝑦 as the output, and the IOS-gain can be rendered
arbitrarily small by selecting 𝑐 small enough. Therefore,
the symmetric product system (23a)-(23b) is a feedback
interconnection of two IOS subsystems, where the zero-
state detectablility can be easily verified. It follows from the
small-gain theorem [20] that, there exists 𝑐 > 0 such that the
symmetric product system (23a)-(23b) is GAS with respect
to (𝑥 − 𝑥★, �̄� − 𝑦★, �̄�𝑥 , �̄�𝑦) uniformly in (𝜃 (0),𝜔(0)) for all
𝑐 ∈ (0, 𝑐). Finally, we conclude that the closed-loop system
is SPAS with respect to (𝑥 − 𝑥★, 𝑦− 𝑦★, 𝑣𝑥 , 𝑣𝑦) uniformly in
(𝜃 (0),𝜔(0)) by invoking Theorem 2.

Remark 2: Compared with the surge force tuning based
source seeking schemes in [7], [8], the presented scheme
does not require an additive periodic perturbation. The ad-
ditive periodic perturbation is necessary in the Lie bracket
averaging-based algorithm [8] since it is used to introduce
the back-and-forth motion of a vehicle. However, as shown in
Section III, only with a multiplicative periodic perturbation
and without an additive periodic perturbation, the pull back
system still involves an operation that is calculating Lie
bracket with the vector g, i.e., [g(𝑠2, 𝑞), [g(𝑠1, 𝑞), f(𝑞, 𝑣)]].
This viewpoint shows that besides the standard averaging
approach [2] and the Lie bracket approximation approach
[8], the symmetric product approximation can also be used
to obtain gradient information.

V. NUMERICAL SIMULATIONS

In this section, we present simulation results to validate the
effectiveness and illustrate the performance of the proposed
source seeking scheme. All the parameters are given in SI
units.

Consider an underactuated marine surface vessel with
linear hydrodynamic damping [5], where the dynamical
equations are given by (1a)-(1b) with

𝐶 (𝑣) =


0 0 −𝑚22𝑣𝑦
0 0 𝑚11𝑣𝑥

𝑚22𝑣𝑦 −𝑚11𝑣𝑥 0

 , 𝐷 =


𝑑11 0 0
0 𝑑22 0
0 0 𝑑33

 ,
where

𝑚11 = 1.412, 𝑚22 = 1.982, 𝑚33 = 0.354,
𝑑11 = 3.436, 𝑑22 = 12.99, 𝑑33 = 0.864.
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Fig. 4. Paths of the underactuated surface vessel in source seeking (𝑐 = 1) .
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Fig. 5. Configuration trajectories of the underactuated surface vessel in
source seeking (𝑐 = 1) .

The surface vessel is assumed to rest at the origin initially,
i.e., (𝑞(0), 𝑣(0)) = (0,0). Assume that the cost function is
𝜌(𝑥, 𝑦) = (𝑥−2)2 +0.5(𝑦−3)2 +1.

It follows from the equations (1a)-(1b) that the constant
input (𝑢∗1, 𝑢

∗
2) = (0, 𝑐) leads to the steady-state velocity 𝑣∗ =

(𝑣∗𝑥 , 𝑣∗𝑦 ,𝜔∗) = (0,0, 𝑐/𝑑33). Then, the constant 𝑐 is chosen
such that 𝜕 [𝐶 (𝑣)𝑣∗] /𝜕𝑣+ [𝜕 [𝐶 (𝑣)𝑣∗] /𝜕𝑣]⊤ ≤ 2𝐷 holds. By
direct calculation, we have 4𝑑11𝑑22 − (𝜔∗)2 (𝑚11 −𝑚22)2 ≥
0, which implies that 𝑐 ≤ 2

√
𝑑11𝑑22𝑑33/(𝑚22 −𝑚11) = 20.25.

That is, with the steady-state input 𝑢∗ = [0, 𝑐]⊤ with 𝑐 ≤
20.25, the system is shifted passive.

In the first example, we select the control parameters in
(33)-(34) to be 𝑐 = 1, 𝑘 = 1. The simulation results are shown
in Figs. 4-5 for 𝜀 = 0.1 and 𝜀 = 0.05. In the second example,
we increase the constant torque to 𝑐 = 3. The simulation
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Fig. 6. Paths of the underactuated surface vessel in source seeking (𝑐 = 3) .
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Fig. 7. Configuration trajectories of the underactuated surface vessel in
source seeking (𝑐 = 3) .

results of the second example are shown in Figs. 6-7 for
𝜀 = 0.1 and 𝜀 = 0.02. It can be seen from both examples that
the position trajectory of the underactuated surface vessel
converges to the 𝑂 (𝜀)-neighborhood of the desired position
(𝑥★, 𝑦★) = (2,3). Furthermore, as 𝜀→ 0, the trajectories of
the surface vessel converge to the trajectory of symmetric
product system which represents the ideal solution. In gen-
eral, a smaller 𝜀 leads to a smoother trajectory. The only
limitation on the value of 𝜀 is the value of the control
input (33) which increases as 𝜀 decreases. In both examples,
the vessel converges to the desired neighborhood within 30
seconds.

VI. CONCLUSIONS

The ES design for force-controlled underactuated mechan-
ical systems without position or velocity measurements was

previously an open problem. In this work, we developed a
source seeking scheme for generic force-controlled planar
underactuated vehicles by surge force tuning. The control
design is based on the symmetric product approximations,
averaging, passivity, and partial-state stability theory. The
controller does not require any position or velocity measure-
ments but only real-time measurements of the source signal
at the current position. The partial-state semi-global practical
uniform asymptotic stability (P-SPUAS) is proved for the
closed-loop source seeking system. Numerical simulations
of an underactuated surface vessel illustrate the performance
of the proposed source seeker.

APPENDIX A.
THE VARIATION OF CONSTANTS FORMULA

Consider the dynamical system

¤𝑥 = 𝑔(𝑡, 𝑥), 𝑥(0) = 𝑥0, (35)

where the vector field 𝑔(𝑡, 𝑥) is locally Lipschitz in 𝑥 uni-
formly in 𝑡. The flow map Φ

𝑔

0, 𝑡 (·) is a diffeomorphism, which
describes the solution of (35) at time 𝑡, i.e., 𝑥(𝑡) = Φ

𝑔

0, 𝑡 (𝑥0).
Given a diffeomorphism 𝜙 and a vector field 𝑓 , the pull

back of 𝑓 along 𝜙, denoted by 𝜙∗ 𝑓 , is the vector field

(𝜙∗ 𝑓 ) (𝑥) B
(
𝜕𝜙−1

𝜕𝑥
◦ 𝑓 ◦𝜙

)
(𝑥), (36)

where ( 𝑓 ◦ 𝜙) (𝑥) = 𝑓 (𝜙(𝑥)). The variation of constants
formula [4], [13] characterizes the relationship between the
flow of 𝑓 +𝑔 and the flows of 𝑓 and 𝑔.

Theorem 4 (Variation of constants formula): Consider
the dynamical system

¤𝑥 = 𝑓 (𝑡, 𝑥) +𝑔(𝑡, 𝑥), 𝑥(0) = 𝑥0, (37)

where 𝑓 , 𝑔 : R≥0 ×R𝑛 → R𝑛 are smooth vector fields. If 𝑧(𝑡)
is the solution of the system

¤𝑧(𝑡) =
((
Φ

𝑔

0, 𝑡

)∗
𝑓

)
(𝑡, 𝑧), 𝑧(0) = 𝑥0, (38)

then the solution 𝑥(𝑡) of the initial value problem

¤𝑥 = 𝑔(𝑡, 𝑥), 𝑥(0) = 𝑧(𝑡) (39)

is the solution of system (37).
System (38) is called the pull back system. Furthermore,

if 𝑓 is a time-invariant vector field and 𝑔 is a time-varying
vector field, then the pull back of 𝑓 along Φ

𝑔

0, 𝑡 is given by((
Φ

𝑔

0, 𝑡

)∗
𝑓

)
(𝑡, 𝑥) = 𝑓 (𝑥)

+
∞∑︁
𝑘=1

∫ 𝑡

0
· · ·

∫ 𝑠𝑘−1

0

(
ad𝑔 (𝑠𝑘 ,𝑥) · · ·ad𝑔 (𝑠1 ,𝑥) 𝑓 (𝑥)

)
d𝑠𝑘 · · ·d𝑠1.

(40)
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APPENDIX B.
PROOF OF PROPOSITION 2

We successively prove that conditions 1, 2, and 3 of
Definition 3 are satisfied.
1) Take an arbitrary 𝑐2 > 0, and let 𝑏2 ∈ (0, 𝑐2). By the P-US

property, there exists 𝑐1 such that

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥1 (𝑡) | ≤ 𝑏2, ∀𝑡 ≥ 𝑡0, ∀𝑥20 ∈ R𝑛2 .

Let 𝑏1 ∈ (0, 𝑐1), and by the P-UGA property, there exists
𝑇 such that

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥1 (𝑡) | ≤ 𝑏1, ∀𝑡 ≥ 𝑡0 +𝑇, ∀𝑥20 ∈ R𝑛2 .

Let 𝑑 = min{𝑐1 − 𝑏1, 𝑐2 − 𝑏2} and 𝐾 = {(𝑥1, 𝑥2) ∈ R𝑛1 ×
R𝑛2 : |𝑥1 | ≤ 𝑐1, |𝑥2 | ≤ 𝑟}, where 𝑟 > 0 is an arbitrary
number. By the partial converging trajectory property,
there exists 𝜀∗ such that for all (𝑥10, 𝑥20) ∈ 𝐾 and for
all 𝜀 ∈ (0, 𝜀∗),

|𝑥𝜀1 (𝑡) − 𝑥1 (𝑡) | < 𝑑, ∀𝑡 ∈ [𝑡0, 𝑡0 +𝑇] .

Thus, we conclude that for all 𝑡0 ∈ R≥0, for all (𝑥10, 𝑥20) ∈
𝐾 and for all 𝜀 ∈ (0, 𝜀∗),

|𝑥𝜀1 (𝑡) | < 𝑐2, ∀𝑡 ∈ [𝑡0, 𝑡0 +𝑇],
|𝑥𝜀1 (𝑡) | < 𝑐1, for 𝑡 = 𝑡0 +𝑇.

(41)

Since |𝑥𝜀1 (𝑡0 +𝑇) | < 𝑐1, a repeated application of (41)
yields that for all (𝑥10, 𝑥20) ∈ 𝐾 and for all 𝜀 ∈ (0, 𝜀∗),
we have |𝑥𝜀1 (𝑡) | < 𝑐2, ∀𝑡 ≥ 𝑡0.

2) Take an arbitrary 𝑐1 > 0, and let 𝑏1 ∈ (0, 𝑐1). By the P-
UGB and P-UGA properties, there exist 𝑏2 and 𝑇 such
that for all 𝑡0 ∈ R≥0 and for all 𝑥20 ∈ R𝑛2 ,

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥1 (𝑡) | ≤ 𝑏2, ∀𝑡 ≥ 𝑡0,
|𝑥10 | ≤ 𝑐1 =⇒ |𝑥1 (𝑡) | ≤ 𝑏1, ∀𝑡 ≥ 𝑡0 +𝑇.

Let 𝑐2 > 𝑏2, and by the partial converging trajectory
property again, we conclude that there exists 𝜀∗ such
that for all (𝑥10, 𝑥20) ∈ 𝐾 and for all 𝜀 ∈ (0, 𝜀∗), we have
|𝑥𝜀1 (𝑡) | < 𝑐2, ∀𝑡 ≥ 𝑡0.

3) Take arbitrary 𝑐1, 𝑐2 > 0. By the Item 1 proven above,
there exist 𝑐3 and 𝜀∗ such that for all 𝑡0 ∈ R≥0, for all
𝜀 ∈ (0, 𝜀∗),

|𝑥10 | ≤ 𝑐3 =⇒ |𝑥𝜀1 (𝑡) | < 𝑐2, ∀𝑡 ≥ 𝑡0, ∀𝑥20 ∈ B̄𝑛2
𝑟 . (42)

Let 𝑏3 ∈ (0, 𝑐3), and by the P-UGA property, there exists
𝑇 such that for all 𝑥20 ∈ R𝑛2 ,

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥1 (𝑡) | ≤ 𝑏3, ∀𝑡 ≥ 𝑡0 +𝑇.

Let 𝑑 = 𝑐3−𝑏3. Then, by the partial converging trajectory
property, there exists 𝜀# such that for all 𝜀 ∈ (0, 𝜀#) and
for all 𝑥20 ∈ B̄𝑛2

𝑟 ,

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡) − 𝑥1 (𝑡) | < 𝑑, ∀𝑡 ∈ [𝑡0, 𝑡0 +𝑇],

which implies that for all 𝜀 ∈ (0, 𝜀#) and for all 𝑥20 ∈ B̄𝑛2
𝑟 ,

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡0 +𝑇) | < 𝑐3.

Finally, together with (42), we conclude that for all 𝑡0 ∈
R≥0, for all 𝜀 ∈ (0,min{𝜀∗, 𝜀#}), and for all 𝑥20 ∈ B̄𝑛2

𝑟 ,

|𝑥10 | ≤ 𝑐1 =⇒ |𝑥𝜀1 (𝑡) | < 𝑐2, ∀𝑡 ≥ 𝑡0 +𝑇,

which completes the proof.
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