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Further Results on Safety-Critical 
Stabilization of Force-Controlled 
Nonholonomic Mobile Robots
In this article, we address the stabilization problem for force-controlled nonholonomic 
mobile robots under safety-critical constraints. We propose a continuous, time-invariant 
control law based on the γm-quadratic programming (γm-QP) framework, which unifies 
control Lyapunov functions (CLFs) and control barrier functions (CBFs) to enforce both 
stability and safety in the closed-loop system. For the first time, we construct a global, 
time-invariant, strict Lyapunov function for the closed-loop nonholonomic mobile robot 
full-dynamic system with a nominal stabilization controller in polar coordinates; this 
strict Lyapunov function then serves as the CLF in the QP design. Next, by exploiting 
the inherent cascaded structure of the vehicle dynamics, we develop a CBF for the 
mobile robot via an integrator backstepping procedure. Our main results guarantee 
both asymptotic stability and safety for the closed-loop system. Both the simulation and 
experimental results are presented to illustrate the effectiveness and performance of our 
approach. [DOI: 10.1115/1.4070495]
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1 Introduction
The study of control problems for nonholonomic systems has 

been carried out since the early 1980s—see Ref. [1] for a survey. 
The main challenge is that, although these systems are controllable, 
it is impossible to achieve asymptotic stability of an isolated equi
librium using a continuous, time-invariant state feedback control 
law due to Brockett’s necessary condition on stabilization [2]. 
Hence, the stabilization of nonholonomic mobile robots and the 
construction of corresponding control Lyapunov functions 
(CLFs) remain challenging problems of significant ongoing inter
est in the context of robustness analysis and controller design. 
See Ref. [3] for a continuous time-varying control method, and 
Ref. [4] for a time-invariant control approach, along with corre
sponding strict Lyapunov constructions.

Constructions of global strict Lyapunov functions for nonholo
nomic systems are by no means trivial or straightforward. To the 
best of the authors’ knowledge, only a few studies have presented 
such global and strict Lyapunov functions for nonholonomic 
mobile robots [3]. Very recently, global strict Lyapunov functions 
were developed for the kinematic unicycle model using backstep
ping and forwarding techniques in Refs. [5,6].

Ensuring operational safety while achieving control objectives is 
a fundamental requirement in autonomous control systems. For 
instance, in practical applications, safety constraints—such as 
obstacle and collision avoidance between vehicles—must also be 
considered in addition to the set-point stabilization or trajectory 

tracking task for mobile robots [7,8]. Achieving satisfactory 
control performance often requires aggressive maneuvers, while 
safety necessitates conservative actions and strict constraint adher
ence. The tension between performance and safety is particularly 
acute in mobile robots, whose nonholonomic dynamics inherently 
prevent continuous, time-invariant feedback from stabilizing the 
target configuration. As a result, enforcing both asymptotic stabi
lity and safety constraints simultaneously is far more challenging 
than in fully-actuated holonomic systems.

In the past decade, control barrier function (CBF)-based tech
niques have proven effective for systematically enforcing safety 
constraints [9,10]. Since then, CBFs have been applied in a 
variety of domains, including walking robots [11], automotive sys
tems [4,12], stochastic systems [13], and multi-agent systems [8], 
to name a few. To “mediate” the conflict between the safety 
constraints and the control objective (e.g., set-point stabilization, 
trajectory tracking, or mere open-loop steering of the system), 
numerous quadratic program (QP)-based control techniques 
have been developed in Refs. [9,10,14]. According to different 
types of QP formulation, the existing results may be categorized 
into CLF–CBF-based QP [9–11,14], CBF-based QP [11,14–16], 
and γm–CLF–CBF-based QP (γm-QP) methods [4,17]. Among 
the various methods, the γm-QP approach is preferred in many 
applications due to its ability to guarantee asymptotic stability 
of the closed-loop system and its robustness in handling 
disturbances.

Furthermore, applying CBFs directly to mobile robots presents 
significant challenges due to their inherent nonholonomic con
straints, which complicate establishing a direct relationship 
between safety constraints and control inputs, particularly when 
the system’s relative degree exceeds one [18]. To address this 
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issue, high-order CBFs have been developed in Ref. [19]. This 
extension ensures the forward invariance of appropriately 
defined, dynamically extended safe sets, thereby enabling control
ler synthesis via QP even for systems with higher relative degrees. 
However, constructing suitable high-order CBFs can be intricate, 
often requiring multiple differentiations of the barrier function 
and complex modifications to the safe set definition, which may 
hinder straightforward practical implementation.

In Ref. [20], a safety-critical controller is designed for connected 
automated vehicles, where the vehicles are modeled by integrators. 
Using the double-integrator model, the multi-agent collision avoid
ance problem has been studied via CBF approaches in Ref. [8]. 
Based on the first-order unicycle (kinematic) model, CBF-based 
obstacle avoidance has been addressed in Refs. [21,22]. In partic
ular, in Ref. [21], a CBF backstepping approach is proposed for 
the kinematic unicycle model. In Ref. [22], an obstacle-avoidance 
strategy for nonholonomic-integrator vehicles is proposed by reg
ulating vehicle speed and orientation separately via two CBFs 
while maintaining a nonzero forward speed in dynamic environ
ments using velocity obstacles. However, none of these existing 
works provides guarantees of asymptotic stability for the 
closed-loop system. Moreover, a more realistic model for vehicle 
applications is to consider the second-order full dynamical 
(kinematics-kinetics) model of the unicycle [23,24]. However, to 
the best of the authors’ knowledge, few studies have addressed 
the stabilization problem for force-controlled nonholonomic vehi
cles subject to safety-critical constraints.

In this article, we address the stabilization problem for force- 
controlled nonholonomic mobile robots under safety-critical con
straints. We propose a continuous, time-invariant control law 
based on the γm-QP framework to enforce both stability and 
safety in the closed-loop system. The main contribution of this 
work is that, for the first time, we construct a global, time-invariant, 
and strict Lyapunov function for the closed-loop nonholonomic 
mobile robot (kinematic–dynamic) system under a nominal stabili
zation controller in polar coordinates. This global strict Lyapunov 
function then serves as the CLF in the γm-QP design. Compared 
with our previous result in Ref. [4], where the Lyapunov function 
is valid only within an arbitrarily large but still bounded region, the 
present work develops a globally valid Lyapunov function whose 
definition and derivative properties hold for all admissible states, 
without any restriction on the region of attraction. Compared 
with the designs in Refs. [5,6], our controller is much simpler 
and applied to the full-dynamic unicycle system. We also present 
both simulation and experimental results to demonstrate the perfor
mance of the developed controller. In particular, the experimental 
results show that the proposed method is applicable to scenarios 
such as autonomous parking with obstacle avoidance and inter- 
vehicle collision avoidance.

The original γm-QP framework is based on reciprocal CBFs 
[17]. However, in recent years, there has been a shift from recipro
cal CBFs to zeroing CBFs, as reciprocal CBFs may exhibit poor 
robustness properties. Hence, in this work, we present the γm-QP 
approach within the framework of zeroing CBFs. Furthermore, dis
tinct from our previous work [4], we also construct the zeroing 
CBF using the integrator backstepping technique.

In our previous work [4], we construct a strict Lyapunov func
tion for the closed-loop mobile robot with a nominal stabilization 
controller in the large (i.e., on any compact subset of the state 
space), where it serves as a CLF in the safety-critical control 
design. However, the constructed Lyapunov function is not 
global, meaning that it depends on the initial configuration of the 
vehicle. To the best of the authors’ knowledge, a global, time- 
invariant, strict Lyapunov function has not yet been reported in 
the literature for the full kinematic-kinetic mobile robot system. 
Moreover, the problem of eliminating potential undesired equilib
ria, e.g., via introducing additional constraints in the QP [25], and 
explicit robustness analyses—such as the treatment of saturation 
effects or the derivation of input-to-state stability bounds, remain 
out of scope of this Letter.

The structure of the article is as follows: Sec. 2 presents the 
problem formulation and preliminaries on safety-critical control. 
Section 3 presents the main results, including the constructions 
of the CLF and CBF, and the controller design. Section 4 provides 
both simulation and experimental results that demonstrate the prac
tical application of the theoretical developments. Finally, Sec. 5
offers concluding remarks.

2 Preliminaries on Safety-Critical Control
Notation: Let |·| denote the Euclidean norm on Rn. For a subset 

S ⊂ Rn, ∂S represents the boundary of S, and int(S) represents the 
interior of S. K is the class of continuous functions R≥0 → R≥0
which is zero at zero and strictly increasing; K∞ is a subset of 
the class K functions which are unbounded. For a matrix 
P ∈ Rn×n, λM(P) represents the maximum eigenvalue of P. 
Throughout this article, we omit the arguments of functions 
when they are clear from the context.

Let us consider a nonlinear control-affine system

ẋ = f (x) + g(x)u (1) 

where the state x ∈ Rn and the control u ∈ Rm. We assume that 
f :Rn → Rn and g :Rn → Rn×m are locally Lipschitz functions 
and f (0) = 0. Recall that a C∞ function V :Rn → R≥0 is said to 
be a (global) CLF for Eq. (1), if V is positive definite, proper, 
and satisfies the following implication:

LgV(x) = 0=⇒Lf V(x) + α(|x|) < 0, ∀x ∈ Rn \ {0} (2) 

where α ∈ K [26].
Safety can be formulated as the forward invariance of designated 

sets within the system’s state space. A set C ⊂ Rn is said to be 
forward invariant, if for each initial condition x◦ ∈ C, the resulting 
solution of Eq. (1) x(t; x◦) ∈ C for all t ≥ 0. If the set C is forward 
invariant, system (1) is said to be safe on the set C.

Consider the safety set C defined as the zero-superlevel set of a 
C1 function h :Rn → R, i.e.,

C := {x ∈ Rn :h(x) ≥ 0} (3) 

The following definition is standard [10].
DEFINITION 1 (CBF). Let C be defined by Eq. (3). Then, h is a 

(zeroing) CBF for Eq. (1) if there exists αh ∈ K such that the fol
lowing implication holds:

Lgh(x) = 0 =⇒ Lf h(x) + αh(h(x)) ≥ 0, ∀x ∈ C (4) 

An effective method for combining a CLF and a CBF was devel
oped in Ref. [17], known as the γm-QP approach. The original 
γm-QP formulation in Ref. [17] is based on reciprocal CBFs. 
Here, we restate the γm-QP problem using zeroing CBFs for con
sistency with our framework as follows:

min
1
2

(u⊤u + mδ⊤δ)

s.t. γf (Lf V(x) + α(|x|)) + LgV(x)u + LgV(x)δ ≤ 0

− Lf h(x) − αh(h(x)) − Lgh(x)u ≤ 0

(5) 

where m ≥ 1, γf is defined as γf (s) := γs if s ≥ 0 and γf (s) := s if 
s < 0, and γ ≥ 1. Due to the slack variable δ, the γm-QP problem 
(5) is always feasible. Note that in Eq. (5), we need γ ≥ 1 to 
overcome the impact of δ when Lf V(x) + α(|x|) is positive. The 
closed-form solution to the γm-QP problem (5) can be obtained 
by applying the Karush–Kuhn–Tucker (KKT) conditions. The 
resulting control law given by Eq. (5) is Lipschitz continuous in 
every subset of the safe set C not containing the origin.
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3 Problem Formulation and Main Results
Consider the nonholonomic mobile robot system with kinemat

ics

ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω

⎧
⎨

⎩
(6) 

where (x, y) ∈ R2 denotes the Cartesian coordinates of the vehicle 
on the plane, θ ∈ R denotes its orientation, v ∈ R and ω ∈ R
denote the linear and angular velocities of the vehicle, respectively. 
In addition, the kinetics of the vehicle are described by the force- 
balance equation

m 0
0 I

􏼔 􏼕
v̇
ω̇

􏼔 􏼕

=
1
r

1 1
2R −2R

􏼔 􏼕
τl

τr

􏼔 􏼕

(7) 

where τl and τr are the left and right wheel torques, respectively, m
is the mass, I is the vehicle inertia, r is the wheel radius, and R is the 
wheel axle length [27].

The proposed control scheme contains a feedback transforma
tion that is designed as

τl

τr

􏼔 􏼕

=
r
2

m I
2R

m − I
2R

􏼔 􏼕
uv

uω

􏼔 􏼕

(8) 

After substituting Eq. (8) into Eq. (7), it yields

v̇ = uv, ω̇ = uω (9) 

The safety-critical stabilization problem entails designing a 
control strategy that ensures the closed-loop system trajectories 
remain within a predefined safe set C, defined by Eq. (3), at all 
times t ≥ 0, while simultaneously guaranteeing that the origin of 
the closed-loop system is asymptotically stable.

In the γm-QP framework, the CLF and CBF are individually 
constructed for the mobile robot system. Subsequently, the 
control input is synthesized by solving the γm-QP described in 
Eq. (5).

3.1 Construction of the Global Control Lyapunov 
Function. To address the nonholonomicity, we construct the 
CLF for the mobile robot in polar coordinates, where the position 
of the robot in polar coordinates is given by the distance to the 
origin ρ and the bearing angle ψ, i.e.,

ρ := |(x, y)|, ψ := atan2(− y, − x) (10) 

where “atan2” represent the two-argument arctangent function. 
Defining the variable α := ψ − θ, the kinematics of the vehicle 
become

ρ̇ = −v cos α
α̇ = v

ρ sin α − ω
ψ̇ = v

ρ sin α

⎧
⎨

⎩
(11) 

We have the following result.
PROPOSITION 1 (Global CLF). Consider the mobile robot system 

(9) and (11). Then, there exists a constant μ̅ > 0 such that for all 
μ ∈ (0, μ̅], the function V :R>0 × R4 → R≥0, defined as

V(ρ, α, ψ, z, ω̃) := μ
􏽚W♯(ρ,α,ψ)

0

es − 1
es

􏼒 􏼓

ds + U z, ω̃( ) (12) 

is a global CLF for Eqs. (9) and (11) that satisfies the small control 
property, where ṽ := v − v∗, ω̃ := ω − ω∗, z := ṽ/ρ

W♯(ρ, α, ψ) := ln (W(ρ, α, ψ) + 1)

W(ρ, α, ψ) := W1(ρ, α, ψ) + W2(α, ψ) +
􏽚W1(ρ,α,ψ)

0
Q(l)dl

W1(ρ, α, ψ) :=
1
2

ρ2 + α2 + λψ2( 􏼁

W2(α, ψ) := p11α2 + 2p12αψ + p22ψ2

P :=

1 + λ
2kαλ

1
2kρλ

1
2kρλ

k2
α + k2

ρλ2 + k2
ρλ

2kαk2
ρλ

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

Q(l) :=
16
π2

k2
ρ

kα
λ2λ2

M(P)l

U(z, ω̃) :=
1
2

z2

kz
+

ω̃2

kω

􏼒 􏼓

v∗ := kρ cos (α)ρ
ω∗ := kαα + kρsinc(2α)(α + λψ) 

the parameter λ ≥ 1, the parameters kρ, kα, kz, and kω are arbitrary 
positive constants, and P = [pij]. In other words, pij represents the 
(i, j)th entry of the matrix P.2

Proof. See Appendix. ▪ 
Remark 1. It is necessary to point out the difference between the 
global Lyapunov function (12) and the Lyapunov function we devel
oped in our previous work [4]. In Ref. [4], the Lyapunov function is 
valid within an arbitrarily large, but still bounded region. The for
mulation in Ref. [4] could guarantee safety-critical stabilization, 
but the parameters of the associated Lyapunov function need to be 
chosen according to the initial conditions. In contrast, the Lyapunov 
function developed in the present article is globally valid, which 
eliminates the need for any parameter adjustment based on initial 
states, thereby providing a rigorous analytical foundation for safety- 
critical control across the full admissible space. ▪ 
Remark 2. The new velocity coordinate z := (v − v∗)/ρ is used in 
the dynamic error Eq. (A2). However, one must verify the bound
edness of the term v̇∗(t) in Eq. (A2) along trajectories because this 
term is used in the control law (A3). Direct calculations show that

dv∗

dt
= kρ( cos (α)ρ̇ − sin (α)α̇ρ)

= kρ − cos2 (α)v − sin (α)ρ
v
ρ

sin α − ω
􏼒 􏼓􏼒 􏼓

It can be observed that the term 1/ρ cancels out, and thus the 
boundedness of v̇∗(t) follows. ▪ 
Remark 3. It should be noted that the Lyapunov function V is pos
itive definite in the coordinates (ρ, α, ψ, z, ω̃). Consequently, the 
global asymptotic stability of the nominal error system (A1) and 
(A2) is also established in these coordinates. In Cartesian coordi
nates or in the original velocity coordinates, only the asymptotic 
convergence of trajectories is guaranteed. ▪ 

3.2 Construction of the Control Barrier Function. 
Mechanical and robotic systems often exhibit cascaded structures. 
The problem of constructing CBFs for such systems has been 
investigated in several works. For example, in Refs. [21,28], the 
authors proposed a method for synthesizing zeroing CBFs for 
higher-order systems by leveraging CBFs designed for 
reduced-order models. In Ref. [4], a systematic procedure is pro
posed for constructing reciprocal CBFs for cascaded systems by 
using the CBF associated with the kinematic model through 

2In this article, “sinc(·)” represents the unnormalized sinc function, which is 
defined as sinc(s) : = sin (s)/s if s ≠ 0 and sinc(0) = 1. Note that the function sinc is 
smooth everywhere and globally bounded on R.
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integrator backstepping. In this section, we construct the zeroing 
CBF for the mobile robot (6) and (9) in Cartesian coordinates.

Following the similar integrator backstepping method, we have 
the following result.

PROPOSITION 2 (CBF). Consider the mobile robot system (6) and 
(9). Assume that the admissible set C0 is defined as the zero- 
superlevel set of a given continuously differentiable function 
h0 :R2 → R, i.e.,

C0 := {(x, y) ∈ R2 :h0(x, y) ≥ 0} (13) 

Then, the function h :R4 → R given by

h(x, y, v, w) := h0(x, y) − lvv2 − lωω2 (14) 

is a CBF for Eqs. (6) and (9), where lv, lω are two positive 
constants.
Proof. Let us define q := [x y θ]⊤ and v := [v ω]⊤. Then, the kine
matic system (6) can be expressed in the control-affine form

q̇ = f0(q) + g0(q)v (15) 

where f0(q) ≡ 0 and g0(q) :=
cos θ 0
sin θ 0

0 1

⎡

⎣

⎤

⎦.

We first show that the function h0 is a CBF for the kinematic 
system (15) on the set C0, assuming that the velocity v is the 
control input. This follows directly from the fact that the kinematic 
system (15) is driftless, i.e., f0 ≡ 0. As a result, the CBF condition 
(4) is trivially satisfied since L f0 h0 ≡ 0, and for all (x, y) ∈ C0 and 
any class K function αh, it holds that αh(h0(x, y)) ≥ 0.

Let us denote x := [q v]⊤, u := [uv uω]⊤,

F(x) := f0(q) + g0(q)v
0

􏼔 􏼕

, and G := 0
I

􏼔 􏼕

Then, the cascaded system (6) and (9) can be written as

ẋ = F(x) + Gu (16) 

Next, we verify the condition (4) for the function h and Eq. (16). 

Note that LGh =
∂h
∂v

= 0 implies that v = 0. Hence, on the set 

{v = 0}, we have

LFh( )|v=0 =
∂h
∂q

(f0 + g0v)

􏼌
􏼌
􏼌
􏼌
v=0

=0 (17) 

and h|v=0 = h0. In other words, αh h|v=0

( 􏼁
= αh(h0(x, y)) ≥ 0 for all 

(x, y) ∈ C0. Therefore, we verify the implication (4) and thus, h is a 
CBF for the system (6) and (9). ▪ 
Remark 4. It can be seen from Eqs. (14) and (9) that the con
structed CBF h has a relative degree of {1, 1} for all states satisfy
ing (v, ω) ≠ (0, 0). On the set (v, ω) = (0, 0), it holds that LFh = 0
and αh(h) ≥ 0; hence, the safety property still holds. This means 
that even in those states where u has no influence on ḣ, the 
system remains safe. This is intuitively clear because, in such 
cases, the mobile robot simply stops (i.e., (v, ω) = (0, 0)). With 
the CBF h, the robot may safely stop in front of an obstacle 
while maintaining the safety property. This behavior is reminiscent 
of the undesirable equilibria observed in CLF–CBF-based QPs [25] 
and may be solved by introducing additional QP constraints [25]. 
However, the problem of eliminating potential undesired equilibria 
remains out of the scope of this paper. ▪ 

3.3 Safety-Critical Control Design. We have constructed a 
global CLF and a zeroing CBF for the nonholonomic mobile 
robot system, as presented in Propositions 1 and 2, respectively. 
Based on these constructions, the safety-critical stabilization 
control law can be derived by solving the γm-QP problem (5). It 
is worth noting that the original γm-QP formulation in Ref. [17] 

is based on reciprocal CBFs. For completeness, we present parallel 
results of the γm-QP problem (5) using zeroing CBFs.

THEOREM 1. Assume that the system (1) admits a CLF V(x) and a 
CBF h(x), and that 0 ∈ int(C). Then, the γm-QP problem (5) is fea
sible and the resulting control law is given by

u⋆(x) :=

0, x ∈ Ωclf
cbf

∪ {0}

− m
m+1

a̅1

|b1|
2 b⊤

1 , x ∈ Ωclf
cbf

− a2

|b2|
2 b⊤

2 , x ∈ Ωclf
cbf

−μ1b⊤
1 − μ2b⊤

2 , x ∈ Ωclf
cbf

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18) 

where a1 := Lf V(x) + α(|x|), a̅1 := γf (a1), b1 := LgV(x), 
a2 := −Lf h(x) − αh(h(x)), b2 := −Lgh(x)

μ1 :=
|b2|

2a̅1 − b1b⊤
2 a2

(1 +
1
m

)|b1|
2|b2|

2 − |b1b⊤
2 |

2

μ2 :=
−b1b⊤

2 a̅1 + (1 +
1
m

)|b1|
2a2

(1 +
1
m

)|b1|
2|b2|

2 − |b1b⊤
2 |

2 

and

Ωclf
cbf

:= x ∈ Rn :a1 < 0, a2 < 0{ }

Ωclf
cbf

:= x ∈ Rn :a1 ≥ 0, a2 <
m

m + 1
b2b⊤

1

|b1|
2 a̅1

􏼚 􏼛

Ωclf
cbf := x ∈ Rn :a2 ≥ 0, a̅1 <

b1b⊤
2

|b2|
2 a2

􏼚 􏼛

Ωclf
cbf := x ∈ Rn \ Ωclf

cbf
:a̅1 ≥

b1b⊤
2

|b2|
2 a2, a2 ≥

m
m + 1

b1b⊤
2

|b1|
2 a̅1

􏼚 􏼛

Furthermore, under the control law (18), the set C is forward 
invariant. Moreover, if the CLF V satisfies the small control prop

erty and if we select 
γm

m + 1
= 1, then the origin of the closed-loop 

system is asymptotically stable.
Sketch of proof.. The Lagrangian L for the γm-QP (5) is given by

L :=
1
2

(u⊤u + mδ⊤δ) + λ1(a̅1 + b1(u + δ)) + λ2(a2 + b2u) (19) 

where λ1, λ2 ≥ 0 are scalar Lagrange multipliers. The KKT condi
tions are given by

∂L
∂u

= u⊤ + λ1b1 + λ2b2 = 0 (20a) 

∂L
∂δ

= mδ⊤ + λ1b1 = 0 (20b) 

λ1F1 := λ1[a̅1 + b1(u + δ)] = 0 (20c) 

λ2F2 := λ2[a2 + b2u] = 0 (20d) 

The unique optimal solution u⋆(x) in Eq. (18) is derived directly 
from Eq. (20). In fact, the KKT conditions in Eq. (20) are necessary 
and sufficient for u⋆(x) to be an optimal solution to the γm-QP (5). 
The forward invariance of the set C follows directly from Ref. [10] 
since the CBF constraint F2 is satisfied for all x ∈ Rn. To show 
local asymptotic stability (LAS) to 0 ∈ int(C), we first note that 
a2(0) = −αh(h(0)) < 0. Due to the small control property, we 
have u∗(x)→ 0 as x→ 0. Hence, the CBF constraint 
F2 := a2 + b2u⋆ < 0 in a neighborhood of the origin. In other 
words, the barrier constraint is inactive around the origin. Then, 
the control law is obtained by combining the case x ∈ Ωclf

cbf
∪ {0}

and the case x ∈ Ωclf
cbf

, which coincides with the pointwise 
minimum norm (PMN) formula in Ref. [29] and achieves asymp
totic stability. ▪ 
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We are now prepared to present the main result about the design 
of the safety-critical stabilization controller. Let us define 

u̅ :=
􏽨 uv

ρ
, uω

􏽩⊤
, fκ(ρ, ϕ, α) :=

􏽨
− v cos (α),

v
ρ

sin α − ω,
v
ρ

sin α
􏽩⊤

f1 :=
fκ(ρ, ϕ, α)

− v̇∗

ρ + kρ cos (α)2z + cos (α)z2

−ω̇∗

⎡

⎢
⎣

⎤

⎥
⎦, g1 :=

03×2

I2

􏼔 􏼕

f2 := v cos θ v sin θ ω 0 0
􏼂 􏼃⊤, g2 :=

03×2

diag(ρ, 1)

􏼔 􏼕

Then, the γm-QP problem is formulated as

min
1
2

(u̅⊤u̅ + mδ⊤δ)

s.t.F1 := γf (L f1 V + α(|χ|)) + Lg1 Vu̅ + Lg1 Vδ ≤ 0

F2 := −L f2 h(x) − αh h(x)( ) − Lg2 h(x)u̅ ≤ 0

(21) 

where χ := [ρ α ψ z ω̃]⊤, x := [x y θ v ω]⊤, α :=
ϵWẆ| fnom

(W + 1)2 −
1
2
|ζ|2, 

αh ∈ K, and ϵ > 0 is chosen to be sufficiently small.
The following proposition follows directly as a corollary of 

Propositions 1 and 2, together with Theorem 1.
PROPOSITION 3. The γm-QP problem (21) is feasible, and under 

the resulting control law, the set int(C) is forward invariant. If 
0 ∈ int(C), then the barrier constraint is inactive (F2 < 0) around 
the origin, and the resulting control law is continuous. If we 

select 
γm

m + 1
= 1, the origin of the closed-loop system is locally 

asymptotically stable.

4 Simulation and Experimental Results
This section presents both simulation and experimental results 

obtained using a laboratory-size differential-drive mobile robot, 
designed to evaluate the practical effectiveness and performance 
of the proposed safety-critical stabilization controller.

4.1 Simulation Results. The physical properties of the non
holonomic mobile robot were measured as

m = 1.0, I = 0.025, r = 0.03, R = 0.15 

All parameters are given in SI units. The initial conditions of the 
robot are randomly selected as (x0, y0, θ0) = (−3.15, 2.96, −1.43), 
and the robot is initially at rest. The target position is set at the 

origin. To illustrate the effectiveness of the proposed approach, 
three controllers (i.e., nominal controller (A3), CLF–QP (12), 
and CLF–CBF–QP (18)) were implemented and compared. We 
assume that a circular obstacle is located at ( − 2, 0) with radius 
r = 0.3. In other words, the admissible set is given by 
C0 := {(x, y) ∈ R2 :h0(x, y) = 40((x + 2)2 + y2 − 0.32)}. We 

define α :=
μWẆ| fnom

2(W + 1)2 −
1
2
|ζ|2 and αh(s) := 2s. The control param

eters are set to λ = 3, kρ = 2, kα = 2, kz = 4, kω = 4, μ = 0.05, lv = 1, 
lω = 1, and m = 1. The simulation results are shown in Figs. 1 and 
2, which demonstrate that the proposed CLF–CBF γm-QP control
ler effectively achieves parking with obstacle avoidance.

4.2 Experimental Results. The experiments were conducted 
in the Autonomous Systems and Control Laboratory (ASCL) at the 
City College of New York. The experiment setup is shown in 
Fig. 3. The experimental setup comprises a differential-drive nonho
lonomic mobile robot operating within a 6 m × 6 m workspace. High- 
precision global localization is achieved using a VICON motion 
capture system equipped with eight Vero 2.2 cameras, operating at 
330 Hz with an accuracy of 1 mm. The computational architecture 
consists of a host PC for data processing and data streaming, and a 
laptop dedicated to executing the proposed control algorithm. The 
proposed safety-critical stabilization algorithm is implemented on 
the laptop using MATLAB/SIMULINK R2025a. An unpowered robot 
was strategically placed at (−0.6, 0.4) to serve as a static obstacle 

Fig. 1 Simulation paths of the robot in the XY plane Fig. 2 Simulation trajectories of the robot in polar coordinates

Fig. 3 Experimental system framework
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to evaluate avoidance capabilities. The admissible set is given 
by C0 := {(x, y) ∈ R2 :h0(x, y) = 40((x + 0.6)2 + (y − 0.4)2 − 0.22)}. 
The robot was initially at (x0, y0, θ0) = (−1.08, 1.37, 0.78), with 
both linear and angular velocities set to zero. The target position 
was set at the origin. The same control parameters as in the simula
tions were used. The experimental results are shown in Figs. 4 and 
5, which illustrate that the proposed CLF–CBF γm-QP controller 
successfully performs parking while avoiding obstacles. It should 
be noted that the experimental trajectory differs from the simulation 
trajectory in Figs. 4 and 5, and the angular error does not converge 
exactly to zero. This discrepancy is primarily due to the actuator 
saturation and the dead-zone effect when the control input is small.
Remark 5. In the experiments, a safety margin was deliberately 
introduced to account for the physical size of the mobile robot. 
Specifically, the effective obstacle boundaries used in the CBF 
(r = 0.2) were defined to be slightly larger than the actual physical 
obstacles. This ensures that even when the robot’s center of mass 
reaches the boundary of the defined obstacle, the robot’s physical 
body still remains clear of contact with the real obstacle. ▪ 

5 Conclusions
This work presents a continuous, time-invariant control strategy 

grounded in the γm-QP framework, which integrates CLFs and 

CBFs to ensure both stability and safety for the closed-loop 
system. Notably, we develop a global, time-invariant, strict Lyapu
nov function for a nonholonomic mobile robot system, utilizing a 
nominal stabilization controller in polar coordinates. This strict 
Lyapunov function is subsequently employed as the global CLF 
in the QP formulation. Furthermore, by leveraging the inherent cas
caded structure of the vehicle’s dynamics, we construct a CBF for 
the mobile robot through an integrator backstepping approach. The 
main results guarantee that the closed-loop system achieves both 
asymptotic stability and safety. Experimental validations are pro
vided to demonstrate the efficacy and performance of the proposed 
method. Future research will focus on extending this framework to 
address safety formation control in multi-agent systems, incorpo
rating robustness analysis and explicitly accounting for input 
saturation.
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Appendix: Proof of Proposition 1
First, we show that the function V is positive definite and proper. 

Since U is a positive definite quadratic form, it suffices to show that 
the function W♯ is positive definite and proper in its arguments. 
Direct calculation yields

det(P) =
k2

α + k2
ρλ2 + 2k2

ρλ + k2
ρ

4k2
αk2

ρλ
> 0 

Hence the matrix P = P⊤ > 0, implying that W2 is a positive 
definite quadratic form. Since W1 is also a positive definite 
quadratic form, it follows that W is positive definite and 
proper. Consequently, W♯ is also positive definite and proper in 
its arguments.

Next, according to the definition of a CLF, to establish that V is a 
CLF, we need to show that for all (ρ, α, ψ, z, ω̃) ≠ 0, there exists a 
control input (uv, uω) such that V̇(11)(9) < 0. We demonstrate this by 
explicitly constructing a nominal control law (uv, uω).

In the new velocity coordinates ω̃ := ω − ω∗, z := (v − v∗)/ρ, the 
kinematics (11) become

ρ̇
α̇
ψ̇

⎡

⎣

⎤

⎦ =
−kρ cos (α)2ρ

−kαα − kρsinc(2α)λψ
kρsinc(2α)α

⎡

⎣

⎤

⎦

􏽼���������������􏽻􏽺���������������􏽽
fnom(ρ,α,ψ)

+
−ρ cos (α) 0

sin (α) 1
sin (α) 0

⎡

⎣

⎤

⎦

􏽼����������􏽻􏽺����������􏽽
gnom(ρ,α)

z
ω̃

􏼔 􏼕

(A1) 

Fig. 4 Paths of the robot in the XY plane

Fig. 5 Trajectories of the robot in polar coordinates
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Also, the velocity dynamics in the new coordinates are given by

ż = 1
ρ (uv − v̇∗) + kρ cos (α)2z + cos (α)z2

˙̃ω = uω − ω̇∗

􏼨

(A2) 

The nominal control law (uv, uω) can be selected as the feedback 
linearization control law

uv = v̇∗ − ρ kρ cos (α)2z + cos (α)z2 + kzz
􏼂 􏼃

uω = ω̇∗ − kωω̃

􏼚

(A3) 

which yields the linear closed-loop velocity dynamics

ż = −kzz, ˙̃ω = −kωω̃ (A4) 

Next, we show that V̇|(A1),(A4) < 0 for all (ρ, α, ψ, z, ω̃) ≠ 0.
Noting that the nominal closed-loop system (A1) and (A4)

exhibits a cascaded structure, we first consider the subsystem 
(A1) restricted to the manifold {z = ω̃ = 0}. Evaluating the total 
derivative of W1 along the vector field fnom in Eq. (A1) yields

Ẇ1| fnom
:= 〈∇W1, fnom〉 = −kρ cos2 (α)ρ2 − kαα2 ≤ 0 (A5) 

where ∇ represents the gradient and 〈·, ·〉 represents the inner 
product. Then, by adding and subtracting the terms −kρλψ and 
kρα in second and third rows in fnom, respectively, the α- and 
ψ-dynamics restricted to the manifold {z = ω̃ = 0} are given by

α̇
ψ̇

􏼔 􏼕

= −kα −kρλ
kρ 0

􏼔 􏼕

􏽼�������􏽻􏽺�������􏽽
A

α
ψ

􏼔 􏼕

􏽼�􏽻􏽺�􏽽
ξ

+ −λkρ(sinc(2α) − 1)ψ
kρ(sinc(2α) − 1)α

􏼔 􏼕

􏽼��������������􏽻􏽺��������������􏽽
K(α,ψ)

(A6) 

Since the matrix A in Eq. (A6) is Hurwitz, the Lyapunov equa
tion A⊤P + PA = −I has a unique, positive definite solution P, 
which is given in Proposition 1. In other words, denoting 
ξ := [α ψ]⊤, W2 is a strict Lyapunov function for the linear 
system ξ̇ = Aξ, i.e., 〈W2, Aξ〉 = −|ξ|2. It is easy to show that 

|sinc(2s) − 1| ≤
2
π
|s|, and thus, we have |K(α, ψ)| ≤

2
π

kρλ|α‖ξ|.3

The total derivative of W2 along trajectories of Eq. (A6) is then 
given by

Ẇ2|(A6) = −|ξ|2 + 2ξ⊤PK(α, ψ) (A7) 

≤ −|ξ|2 +
2
π

kρλλM(P)|ξ|(2|α|·|ξ|)

≤ −|ξ|2 +
2
π

kρλλM(P)|ξ| ε|ξ|2 +
α2

ε

􏼒 􏼓 (A8) 

where the last inequality is due to Young’s inequality, and ε > 0
can be chosen as an arbitrary positive number. Hence, for 

|ξ| ≠ 0, letting ε :=
π

4kρλλM(P)|ξ|
> 0, it follows that

Ẇ2|(A6) ≤ −
1
2
|ξ|2 +

8
π2

k2
ρλ2λ2

M(P)|ξ|2α2

≤ −
1
2
|ξ|2 + kαQ(W1(ρ, α, ψ))α2

(A9) 

where in the last inequality we use |ξ|2 ≤ 2W1(ρ, α, ψ). For |ξ| = 0, 
it follows from Eq. (A7) that Eq. (A9) is also true. Consequently, 
we have

Ẇ| fnom
:= 〈∇W, fnom〉 ≤ −

1
2
|ξ|2 − kρ cos2 (α)ρ2 < 0 (A10) 

In other words, W is a global, strict Lyapunov function for the 
subsystem (A1) restricted to the manifold {z = ω̃ = 0}. One can 

easily prove that W♯ is also a global, strict Lyapunov function 
for the subsystem (A1) restricted to the manifold {z = ω̃ = 0}.

Denoting ζ := [z ω̃]⊤, direct calculation shows that

V̇|(A1),(A4) =
μWẆ| fnom

(W + 1)2 +
μW

W + 1
Lgnom W
W + 1

·ζ − |ζ|2 (A11) 

Note that the first and third terms on the right-hand side of 
Eq. (A11) are negative definite terms, while the second term is 
indefinite. In the second term, Lgnom W/(W + 1) is globally 
bounded, i.e., ∃c > 0 such that |Lgnom W/(W + 1)| ≤ c. Hence, 
together with Young’s inequality we have that

μW
W + 1

Lgnom W
W + 1

·ζ ≤
cμW

W + 1
·|ζ| (A12) 

≤
c2μ2

2
W

W + 1

􏼒 􏼓2

+
1
2
|ζ|2 (A13) 

The term −|ζ|2 in Eq. (A11) dominates the term 1
2 |ζ|

2 in 

Eq. (A13). Moreover, the term 
μWẆ| fnom

(W + 1)2 in Eq. (A11) dominates 

the term 
c2μ2

2
W

W + 1

􏼒 􏼓2

in Eq. (A13) near the origin, since the 

latter has a higher degree. Away from the origin, there exists a suf

ficiently small μ > 0 such that 
μWẆ| fnom

(W + 1)2 continues to dominate 

c2μ2

2
W

W + 1

􏼒 􏼓2

, due to the fact that W/(W + 1) remains globally 

bounded. Therefore, we conclude that V̇|(A1),(A4) < 0 is negative 
definite.

Finally, we conclude the proof by noting that Eq. (A3) is contin
uous, and |(uv, uω)| → 0 as |(ρ, α, ψ, z, ω̃)| → 0, which estab
lishes the small control property.
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