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Further Results on Safety-Critical
Stahilization of Force-Controlled
Nonholonomic Mobhile Robots

In this article, we address the stabilization problem for force-controlled nonholonomic
mobile robots under safety-critical constraints. We propose a continuous, time-invariant
control law based on the ym-quadratic programming (ym-QP) framework, which unifies
control Lyapunov functions (CLFs) and control barrier functions (CBFs) to enforce both
stability and safety in the closed-loop system. For the first time, we construct a global,
time-invariant, strict Lyapunov function for the closed-loop nonholonomic mobile robot
Sfull-dynamic system with a nominal stabilization controller in polar coordinates; this
strict Lyapunov function then serves as the CLF in the QP design. Next, by exploiting
the inherent cascaded structure of the vehicle dynamics, we develop a CBF for the
mobile robot via an integrator backstepping procedure. Our main results guarantee
both asymptotic stability and safety for the closed-loop system. Both the simulation and
experimental results are presented to illustrate the effectiveness and performance of our
approach. [DOI: 10.1115/1.4070495]
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1 Introduction

The study of control problems for nonholonomic systems has
been carried out since the early 1980s—see Ref. [1] for a survey.
The main challenge is that, although these systems are controllable,
it is impossible to achieve asymptotic stability of an isolated equi-
librium using a continuous, time-invariant state feedback control
law due to Brockett’s necessary condition on stabilization [2].
Hence, the stabilization of nonholonomic mobile robots and the
construction of corresponding control Lyapunov functions
(CLFs) remain challenging problems of significant ongoing inter-
est in the context of robustness analysis and controller design.
See Ref. [3] for a continuous time-varying control method, and
Ref. [4] for a time-invariant control approach, along with corre-
sponding strict Lyapunov constructions.

Constructions of global strict Lyapunov functions for nonholo-
nomic systems are by no means trivial or straightforward. To the
best of the authors’ knowledge, only a few studies have presented
such global and strict Lyapunov functions for nonholonomic
mobile robots [3]. Very recently, global strict Lyapunov functions
were developed for the kinematic unicycle model using backstep-
ping and forwarding techniques in Refs. [5,6].

Ensuring operational safety while achieving control objectives is
a fundamental requirement in autonomous control systems. For
instance, in practical applications, safety constraints—such as
obstacle and collision avoidance between vehicles—must also be
considered in addition to the set-point stabilization or trajectory
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tracking task for mobile robots [7,8]. Achieving satisfactory
control performance often requires aggressive maneuvers, while
safety necessitates conservative actions and strict constraint adher-
ence. The tension between performance and safety is particularly
acute in mobile robots, whose nonholonomic dynamics inherently
prevent continuous, time-invariant feedback from stabilizing the
target configuration. As a result, enforcing both asymptotic stabi-
lity and safety constraints simultaneously is far more challenging
than in fully-actuated holonomic systems.

In the past decade, control barrier function (CBF)-based tech-
niques have proven effective for systematically enforcing safety
constraints [9,10]. Since then, CBFs have been applied in a
variety of domains, including walking robots [11], automotive sys-
tems [4,12], stochastic systems [13], and multi-agent systems [8],
to name a few. To “mediate” the conflict between the safety
constraints and the control objective (e.g., set-point stabilization,
trajectory tracking, or mere open-loop steering of the system),
numerous quadratic program (QP)-based control techniques
have been developed in Refs. [9,10,14]. According to different
types of QP formulation, the existing results may be categorized
into CLF-CBF-based QP [9-11,14], CBF-based QP [11,14-16],
and ym—CLF-CBF-based QP (ym-QP) methods [4,17]. Among
the various methods, the ym-QP approach is preferred in many
applications due to its ability to guarantee asymptotic stability
of the closed-loop system and its robustness in handling
disturbances.

Furthermore, applying CBFs directly to mobile robots presents
significant challenges due to their inherent nonholonomic con-
straints, which complicate establishing a direct relationship
between safety constraints and control inputs, particularly when
the system’s relative degree exceeds one [18]. To address this
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issue, high-order CBFs have been developed in Ref. [19]. This
extension ensures the forward invariance of appropriately
defined, dynamically extended safe sets, thereby enabling control-
ler synthesis via QP even for systems with higher relative degrees.
However, constructing suitable high-order CBFs can be intricate,
often requiring multiple differentiations of the barrier function
and complex modifications to the safe set definition, which may
hinder straightforward practical implementation.

In Ref. [20], a safety-critical controller is designed for connected
automated vehicles, where the vehicles are modeled by integrators.
Using the double-integrator model, the multi-agent collision avoid-
ance problem has been studied via CBF approaches in Ref. [8].
Based on the first-order unicycle (kinematic) model, CBF-based
obstacle avoidance has been addressed in Refs. [21,22]. In partic-
ular, in Ref. [21], a CBF backstepping approach is proposed for
the kinematic unicycle model. In Ref. [22], an obstacle-avoidance
strategy for nonholonomic-integrator vehicles is proposed by reg-
ulating vehicle speed and orientation separately via two CBFs
while maintaining a nonzero forward speed in dynamic environ-
ments using velocity obstacles. However, none of these existing
works provides guarantees of asymptotic stability for the
closed-loop system. Moreover, a more realistic model for vehicle
applications is to consider the second-order full dynamical
(kinematics-kinetics) model of the unicycle [23,24]. However, to
the best of the authors’ knowledge, few studies have addressed
the stabilization problem for force-controlled nonholonomic vehi-
cles subject to safety-critical constraints.

In this article, we address the stabilization problem for force-
controlled nonholonomic mobile robots under safety-critical con-
straints. We propose a continuous, time-invariant control law
based on the ym-QP framework to enforce both stability and
safety in the closed-loop system. The main contribution of this
work is that, for the first time, we construct a global, time-invariant,
and strict Lyapunov function for the closed-loop nonholonomic
mobile robot (kinematic—dynamic) system under a nominal stabili-
zation controller in polar coordinates. This global strict Lyapunov
function then serves as the CLF in the ym-QP design. Compared
with our previous result in Ref. [4], where the Lyapunov function
is valid only within an arbitrarily large but still bounded region, the
present work develops a globally valid Lyapunov function whose
definition and derivative properties hold for all admissible states,
without any restriction on the region of attraction. Compared
with the designs in Refs. [5,6], our controller is much simpler
and applied to the full-dynamic unicycle system. We also present
both simulation and experimental results to demonstrate the perfor-
mance of the developed controller. In particular, the experimental
results show that the proposed method is applicable to scenarios
such as autonomous parking with obstacle avoidance and inter-
vehicle collision avoidance.

The original ym-QP framework is based on reciprocal CBFs
[17]. However, in recent years, there has been a shift from recipro-
cal CBFs to zeroing CBFs, as reciprocal CBFs may exhibit poor
robustness properties. Hence, in this work, we present the ym-QP
approach within the framework of zeroing CBFs. Furthermore, dis-
tinct from our previous work [4], we also construct the zeroing
CBEF using the integrator backstepping technique.

In our previous work [4], we construct a strict Lyapunov func-
tion for the closed-loop mobile robot with a nominal stabilization
controller in the large (i.e., on any compact subset of the state
space), where it serves as a CLF in the safety-critical control
design. However, the constructed Lyapunov function is not
global, meaning that it depends on the initial configuration of the
vehicle. To the best of the authors’ knowledge, a global, time-
invariant, strict Lyapunov function has not yet been reported in
the literature for the full kinematic-kinetic mobile robot system.
Moreover, the problem of eliminating potential undesired equilib-
ria, e.g., via introducing additional constraints in the QP [25], and
explicit robustness analyses—such as the treatment of saturation
effects or the derivation of input-to-state stability bounds, remain
out of scope of this Letter.
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The structure of the article is as follows: Sec. 2 presents the
problem formulation and preliminaries on safety-critical control.
Section 3 presents the main results, including the constructions
of the CLF and CBF, and the controller design. Section 4 provides
both simulation and experimental results that demonstrate the prac-
tical application of the theoretical developments. Finally, Sec. 5
offers concluding remarks.

2 Preliminaries on Safety-Critical Control

Notation: Let |-| denote the Euclidean norm on R". For a subset
S c R”, 0S represents the boundary of S, and int(S) represents the
interior of S. K is the class of continuous functions R-¢o — Rxo
which is zero at zero and strictly increasing; Ko, is a subset of
the class K functions which are unbounded. For a matrix
P e R™, Jy(P) represents the maximum eigenvalue of P.
Throughout this article, we omit the arguments of functions
when they are clear from the context.

Let us consider a nonlinear control-affine system

x=f(x) + gxu )

where the state x € R" and the control u € R". We assume that
f:R" - R" and g:R" — R™" are locally Lipschitz functions
and f(0) = 0. Recall that a C* function V:R" — Ry is said to
be a (global) CLF for Eq. (1), if V is positive definite, proper,
and satisfies the following implication:

LV(x) = 0=LV(x) +a(jx]) <0, Yxe R"\ {0}  (2)

where a € I [26].

Safety can be formulated as the forward invariance of designated
sets within the system’s state space. A set C C R" is said to be
forward invariant, if for each initial condition x, € C, the resulting
solution of Eq. (1) x(#; x,) € C for all r > 0. If the set C is forward
invariant, system (1) is said to be safe on the set C.

Consider the safety set C defined as the zero-superlevel set of a
C! function 1:R" — R, i.e.,

C:={xeR":hx) >0} 3)

The following definition is standard [10].

DeriNniTioON 1 (CBF). Let C be defined by Eq. (3). Then, % is a
(zeroing) CBF for Eq. (1) if there exists a;, € K such that the fol-
lowing implication holds:

Loh(x) =0 => Leh(x) + a(h(x)) > 0, VxeC 4)

An effective method for combining a CLF and a CBF was devel-
oped in Ref. [17], known as the ym-QP approach. The original
ym-QP formulation in Ref. [17] is based on reciprocal CBFs.
Here, we restate the ym-QP problem using zeroing CBFs for con-
sistency with our framework as follows:

min %(uTu +m8'8)
st 7LV + a(lx) + LyV@u + LV(x)s < 0 ®)
— Lh(x) = an(h(x) = Loh(du < 0

where m > 1, y; is defined as y(s):=ys if s > 0 and y;(s) := s if
s <0, and y > 1. Due to the slack variable §, the ym-QP problem
(5) is always feasible. Note that in Eq. (5), we need y > 1 to
overcome the impact of § when L;V(x) + a(|x|) is positive. The
closed-form solution to the ym-QP problem (5) can be obtained
by applying the Karush—Kuhn-Tucker (KKT) conditions. The
resulting control law given by Eq. (5) is Lipschitz continuous in
every subset of the safe set C not containing the origin.
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3 Problem Formulation and Main Results

Consider the nonholonomic mobile robot system with kinemat-
ics

x=vcosd
y=vsin6 (6)
0=w

where (x, y) € R? denotes the Cartesian coordinates of the vehicle
on the plane, € € R denotes its orientation, v € R and w € R
denote the linear and angular velocities of the vehicle, respectively.
In addition, the kinetics of the vehicle are described by the force-
balance equation

m Offv]| _1[1 1 7
3 R Y L R
where 7; and 7, are the left and right wheel torques, respectively, m
is the mass, 7 is the vehicle inertia, r is the wheel radius, and R is the
wheel axle length [27].

The proposed control scheme contains a feedback transforma-
tion that is designed as

T|_Trfm L u,
=l ] ®

After substituting Eq. (8) into Eq. (7), it yields

V=1Uy, @ =U, )

The safety-critical stabilization problem entails designing a
control strategy that ensures the closed-loop system trajectories
remain within a predefined safe set C, defined by Eq. (3), at all
times ¢t > 0, while simultaneously guaranteeing that the origin of
the closed-loop system is asymptotically stable.

In the ym-QP framework, the CLF and CBF are individually
constructed for the mobile robot system. Subsequently, the
control input is synthesized by solving the ym-QP described in
Eq. (9).

3.1 Construction of the Global Control Lyapunov
Function. To address the nonholonomicity, we construct the
CLF for the mobile robot in polar coordinates, where the position
of the robot in polar coordinates is given by the distance to the
origin p and the bearing angle y, i.e.,

pi=|(x |, w:i=atan2(—y, —x) (10)
where “atan2” represent the two-argument arctangent function.
Defining the variable a:=y — 0, the kinematics of the vehicle
become

p=—-vcosa

a=2isina—w
P

LR

Y= sina

an

We have the following result.

ProrposiTion 1 (Global CLF). Consider the mobile robot system
(9) and (11). Then, there exists a constant i > 0 such that for all
u € (0, i], the function V:R.q X R* — R0, defined as

W“(p,a,y/) S —1
Vip, o, y, z, @) := ﬂj ( -
0 e

is a global CLF for Egs. (9) and (11) that satisfies the small control
property, where V:=v —v*, @ :=w — 0", 2:=7V/p

)ds +UGz &  (12)
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Wi (p, a, w):=In(W(p, a, y) + 1)
Wi(p.a.y)

Wip, a, y):=Wi(p, a, y) + Wala, w) + j Q(hd!

0
1
Wilp, a, ll/)i=§(/’2 +a’ + )

Wala, w) = pna® + 2pnay + poy’
1+41 1
2kl 2k, 2

1 R+ +K2
2k, A 2k,,k%l

164
o) := ;k—”zzz@(ml

1 (% &
Uiz, @)= —+—
(z, @) 3 (kz + ka,>
V' i=k,cos (a)p
o* =kea + kysinca)(a + Ay)

the parameter 4 > 1, the parameters k,, k,, k., and k,, are arbitrary
positive constants, and P = [p;;]. In other words, p;; represents the
(i, j)th entry of the matrix pP?

Proof. See Appendix. u
Remark 1. Tt is necessary to point out the difference between the
global Lyapunov function (12) and the Lyapunov function we devel-
oped in our previous work [4]. In Ref. [4], the Lyapunov function is
valid within an arbitrarily large, but still bounded region. The for-
mulation in Ref. [4] could guarantee safety-critical stabilization,
but the parameters of the associated Lyapunov function need to be
chosen according to the initial conditions. In contrast, the Lyapunov
function developed in the present article is globally valid, which
eliminates the need for any parameter adjustment based on initial
states, thereby providing a rigorous analytical foundation for safety-
critical control across the full admissible space. [
Remark 2. The new velocity coordinate z:= (v — v*)/p is used in
the dynamic error Eq. (A2). However, one must verify the bound-
edness of the term v*(f) in Eq. (A2) along trajectories because this
term is used in the control law (A3). Direct calculations show that

d k
% = k,( cos (a)p — sin (a)ip)

=k, (— cos? (a)v — sin (a)p (K sina — a)))
p

It can be observed that the term 1/p cancels out, and thus the
boundedness of v*(¢) follows. ]
Remark 3. It should be noted that the Lyapunov function V is pos-
itive definite in the coordinates (p, @, y, z, ®). Consequently, the
global asymptotic stability of the nominal error system (Al) and
(A2) is also established in these coordinates. In Cartesian coordi-
nates or in the original velocity coordinates, only the asymptotic
convergence of trajectories is guaranteed. u

3.2 Construction of the Control Barrier Function.
Mechanical and robotic systems often exhibit cascaded structures.
The problem of constructing CBFs for such systems has been
investigated in several works. For example, in Refs. [21,28], the
authors proposed a method for synthesizing zeroing CBFs for
higher-order systems by leveraging CBFs designed for
reduced-order models. In Ref. [4], a systematic procedure is pro-
posed for constructing reciprocal CBFs for cascaded systems by
using the CBF associated with the kinematic model through

’In this article, “sinc(-)” represents the unnormalized sinc function, which is
defined as sinc(s) : = sin(s)/s if s # 0 and sinc(0) = 1. Note that the function sinc is
smooth everywhere and globally bounded on R.

APRIL 2026, Vol. 6 / 021011-3



integrator backstepping. In this section, we construct the zeroing
CBF for the mobile robot (6) and (9) in Cartesian coordinates.

Following the similar integrator backstepping method, we have
the following result.

ProposiTion 2 (CBF). Consider the mobile robot system (6) and
(9). Assume that the admissible set Cy is defined as the zero-
superlevel set of a given continuously differentiable function
ho:R? —> R, ie.,

Co:={(x, y) € R* tho(x, y) = 0} (13)
Then, the function /:R* — R given by
h(x, y. v, w):= ho(x, y) = L,v? = [, (14)

is a CBF for Egs. (6) and (9), where [,, I, are two positive
constants.

Proof. Let us define g:=[xy 0]" and v:=[vw]". Then, the kine-
matic system (6) can be expressed in the control-affine form

g=Jo(q) + go(q)v (15)
cosd 0
where fy(g) = 0 and go(g):=| sind 0
0 1

We first show that the function A, is a CBF for the kinematic
system (15) on the set Cp, assuming that the velocity v is the
control input. This follows directly from the fact that the kinematic
system (15) is driftless, i.e., fy = 0. As a result, the CBF condition
(4) is trivially satisfied since Ly,ho = 0, and for all (x, y) € Cy and
any class K function @y, it holds that a;(ho(x, y)) > 0.

Let us denote x:=[g V1T, ui=[uyuy]",

Fx):= [fo(CI) T)go(q)V]’ and Gim [(I)]

Then, the cascaded system (6) and (9) can be written as
x=F(x)+ Gu (16)

Next, we verify the condition (4) for the function 4 and Eq. (16).
Note that Lgh= % =0 implies that v=0. Hence, on the set

{v=0}, we have

Oh
(Lr)ly=o = % (fo+gov)| =0
q v=0

a7

and hly_o = ho. In other words, a;,(hly=o) = a(ho(x, y)) > 0 for all
(x, y) € Cy. Therefore, we verity the implication (4) and thus, & is a
CBEF for the system (6) and (9). [
Remark 4. It can be seen from Eqs. (14) and (9) that the con-
structed CBF £ has a relative degree of {1, 1} for all states satisfy-
ing (v, ) # (0, 0). On the set (v, w) = (0, 0), it holds that Lrh =0
and a;,(h) > 0; hence, the safety property still holds. This means
that even in those states where u has no influence on £, the
system remains safe. This is intuitively clear because, in such
cases, the mobile robot simply stops (i.e., (v, )= (0, 0)). With
the CBF A, the robot may safely stop in front of an obstacle
while maintaining the safety property. This behavior is reminiscent
of the undesirable equilibria observed in CLF-CBF-based QPs [25]
and may be solved by introducing additional QP constraints [25].
However, the problem of eliminating potential undesired equilibria
remains out of the scope of this paper. =

3.3 Safety-Critical Control Design. We have constructed a
global CLF and a zeroing CBF for the nonholonomic mobile
robot system, as presented in Propositions 1 and 2, respectively.
Based on these constructions, the safety-critical stabilization
control law can be derived by solving the ym-QP problem (5). It
is worth noting that the original ym-QP formulation in Ref. [17]

021011-4 / Vol. 6, APRIL 2026

is based on reciprocal CBFs. For completeness, we present parallel
results of the ym-QP problem (5) using zeroing CBFs.

THEOREM 1. Assume that the system (1) admits a CLF V(x) and a
CBF h(x), and that O € int(C). Then, the ym-QP problem (5) is fea-
sible and the resulting control law is given by

cIf
0, X € Qm U {0}
S x e Qdt
m 2Y1
w*(x):= ol o (18)
b, xe o
—pb] = uyb;, x € Q
where  ap:=LiVx)+a(lx),  ai:=yia),  bri=LV(v),
ap := —Lgh(x) — ay(h(x)), by := —Lgh(x)
4= |bo|*@y — bib]a;
1= 1
(L+ )1 P|baf* = [b1b] 1P
m
1
—bibja; + (1 + —)|bi [Pa
- m
Ha o= 1
(I+ ;)|b1|2|b2|2 —|bib3
and
A= (x € R":a1 <0, a, < 0}
clf . _ n. m bzblT -
Qm.— {Xe R a); = 0, a <m—-HWal
— b bT
Qggfrz {x eR":a, >0,a, <1—22a2}
D2
— bbbl m bb) _
Qlfi=lxeR\QY 4 > 22y, a0 > ———2
bl {x = = T2

Furthermore, under the control law (18), the set C is forward
invariant. Moreover, if the CLF V satisfies the small control prop-

erty and if we select ml =1, then the origin of the closed-loop

m
system is asymptotically stable.
Sketch of proof.. The Lagrangian L for the ym-QP (5) is given by

1
L:= 3 W u+md'8) + @@+ bi(u+8) + olar + bou)  (19)

where 11, 4, > 0 are scalar Lagrange multipliers. The KKT condi-
tions are given by

oL

—=u' + by + by =0 (20a)
ou
oL
gzméT + by =0 (200)
MF :=M0a +biu+8)]=0 (20¢)
MF> = Mhlay + bou]l =0 (20d)

The unique optimal solution u*(x) in Eq. (18) is derived directly
from Eq. (20). In fact, the KKT conditions in Eq. (20) are necessary
and sufficient for u* (x) to be an optimal solution to the ym-QP (5).
The forward invariance of the set C follows directly from Ref. [10]
since the CBF constraint F» is satisfied for all x € R". To show
local asymptotic stability (LAS) to 0 € int(C), we first note that
a2(0) = —a,(h(0)) < 0. Due to the small control property, we
have u*(x) >0 as x— 0. Hence, the CBF constraint
Fr:=ay+ byu* <0 in a neighborhood of the origin. In other
words, the barrier constraint is inactive around the origin. Then,
the control law is obtained by combining the case x € QCITr U {0}
and the case x € QI which coincides with the pcomtwise
minimum norm (PMl\f) formula in Ref. [29] and achieves asymp-
totic stability. u
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Fig. 1 Simulation paths of the robot in the XY plane

We are now prepared to present the main result about the design
of the safety-critical stabilization controller. Let us define

_ U, T v, v, T
= [—, Mm:l , [, §, @) := [—vcos(a), —sina — w, —sma]
p P p

filp, ¢, @) 0
fii= —%+kp cos (@)’z +cos ()2 |, g1 := [ 3X2]
_o* L
. T O3x2
= 0 w00 |, =
foi=[veosOvsinfw00] , g |:diag(p, 1)]

Then, the ym-QP problem is formulated as

1
min 3 (@' +md'5)

S.LFy =LV +a(g) + Ly Vi+ L, vs <0 2D
Fy:=—=Lgh(x) — ap(h(x)) — Lg, h(x)it <0
eWWl, 1
where y:=[pawz®l’, x:=[xyOvo]", a:=—20m |,
xi=lpayzd] [xy ] W1y 2lg”l

ap € I, and € > 0 is chosen to be sufficiently small.

The following proposition follows directly as a corollary of
Propositions 1 and 2, together with Theorem 1.

ProposiTion 3. The ym-QP problem (21) is feasible, and under
the resulting control law, the set int(C) is forward invariant. If
0 € int(C), then the barrier constraint is inactive (F, < 0) around
the origin, and the resulting control law is continuous. If we

select

ml =1, the origin of the closed-loop system is locally

m
asymptotically stable.

4 Simulation and Experimental Results

This section presents both simulation and experimental results
obtained using a laboratory-size differential-drive mobile robot,
designed to evaluate the practical effectiveness and performance
of the proposed safety-critical stabilization controller.

4.1 Simulation Results. The physical properties of the non-
holonomic mobile robot were measured as

m=10, 1=0.025 r=0.03, R=0.15

All parameters are given in SI units. The initial conditions of the
robot are randomly selected as (xo, ¥, ) = (—3.15, 2.96, —1.43),
and the robot is initially at rest. The target position is set at the

ASME Letters in Dynamic Systems and Control

- --Nominal

CLF-CBF

p [m]

a [rad]

1 [rad]
o

L [sec]

Fig. 2 Simulation trajectories of the robot in polar coordinates

origin. To illustrate the effectiveness of the proposed approach,
three controllers (i.e., nominal controller (A3), CLF-QP (12),
and CLF-CBF-QP (18)) were implemented and compared. We
assume that a circular obstacle is located at ( — 2, 0) with radius
r=0.3. In other words, the admissible set is given by

Co:={(x,y) € R?thp(x, y) = 40((x +2)° + y* — 0.3)}. We
VW, 1 .
define a:= ——5 — ~|{|” and ay(s) := 2s. The control param-
2AW+1)* 2

etersaresettoA=3,k, =2,ky =2,k; =4,k, =4, 4=0.05,1, =1,
lp, =1, and m = 1. The simulation results are shown in Figs. 1 and
2, which demonstrate that the proposed CLF-CBF ym-QP control-
ler effectively achieves parking with obstacle avoidance.

4.2 Experimental Results. The experiments were conducted
in the Autonomous Systems and Control Laboratory (ASCL) at the
City College of New York. The experiment setup is shown in
Fig. 3. The experimental setup comprises a differential-drive nonho-
lonomic mobile robot operating within a 6 m X 6 m workspace. High-
precision global localization is achieved using a VICON motion
capture system equipped with eight Vero 2.2 cameras, operating at
330 Hz with an accuracy of 1 mm. The computational architecture
consists of a host PC for data processing and data streaming, and a
laptop dedicated to executing the proposed control algorithm. The
proposed safety-critical stabilization algorithm is implemented on
the laptop using MATLAB/SIMULINK R2025a. An unpowered robot
was strategically placed at (—0.6, 0.4) to serve as a static obstacle

Host

VICON Cameras

Raw VICON Data
5 —

Physical
Movement

Robot States
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Control Command

Test Site -+

Mobile Robot

Fig. 3 Experimental system framework
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Fig. 5 Trajectories of the robot in polar coordinates

to evaluate avoidance capabilities. The admissible set is given
by Co:={(x,y) € R?:hy(x, y) =40((x+ 0.6)* + (y — 0.4)> — 0.22)}.
The robot was initially at (xo, yo, 6p)=(—1.08,1.37,0.78), with
both linear and angular velocities set to zero. The target position
was set at the origin. The same control parameters as in the simula-
tions were used. The experimental results are shown in Figs. 4 and
5, which illustrate that the proposed CLF—-CBF ym-QP controller
successfully performs parking while avoiding obstacles. It should
be noted that the experimental trajectory differs from the simulation
trajectory in Figs. 4 and 5, and the angular error does not converge
exactly to zero. This discrepancy is primarily due to the actuator
saturation and the dead-zone effect when the control input is small.
Remark 5. In the experiments, a safety margin was deliberately
introduced to account for the physical size of the mobile robot.
Specifically, the effective obstacle boundaries used in the CBF
(r=0.2) were defined to be slightly larger than the actual physical
obstacles. This ensures that even when the robot’s center of mass
reaches the boundary of the defined obstacle, the robot’s physical
body still remains clear of contact with the real obstacle. u

5 Conclusions

This work presents a continuous, time-invariant control strategy
grounded in the ym-QP framework, which integrates CLFs and

021011-6 / Vol. 6, APRIL 2026

CBFs to ensure both stability and safety for the closed-loop
system. Notably, we develop a global, time-invariant, strict Lyapu-
nov function for a nonholonomic mobile robot system, utilizing a
nominal stabilization controller in polar coordinates. This strict
Lyapunov function is subsequently employed as the global CLF
in the QP formulation. Furthermore, by leveraging the inherent cas-
caded structure of the vehicle’s dynamics, we construct a CBF for
the mobile robot through an integrator backstepping approach. The
main results guarantee that the closed-loop system achieves both
asymptotic stability and safety. Experimental validations are pro-
vided to demonstrate the efficacy and performance of the proposed
method. Future research will focus on extending this framework to
address safety formation control in multi-agent systems, incorpo-
rating robustness analysis and explicitly accounting for input
saturation.
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Appendix: Proof of Proposition 1

First, we show that the function V is positive definite and proper.
Since U is a positive definite quadratic form, it suffices to show that
the function W* is positive definite and proper in its arguments.
Direct calculation yields

2 2192 2 2
K2+ K202 + 2620 + K
42K

a’p

det(P) = >0

Hence the matrix P =PT >0, implying that W, is a positive
definite quadratic form. Since W) is also a positive definite
quadratic form, it follows that W is positive definite and
proper. Consequently, W¥ is also positive definite and proper in
its arguments.

Next, according to the definition of a CLF, to establish that V' is a
CLF, we need to show that for all (p, a, v, z, @) # 0, there exists a
control input (u,, u,) such that V(l H©) < 0. We demonstrate this by
explicitly constructing a nominal control law (u,, u,).

In the new velocity coordinates @ := w — w*, 7:= (v — v*)/p, the
kinematics (11) become

p -k, cos (@)*p —pcos(a) O
@ | =| —koa = k,sincQa)ly | +| sin(@ 1 [ N ]
Vg k,sinca)a sin (o) 0

Joom (pay) Zrom (p0)

(AD)
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Also, the velocity dynamics in the new coordinates are given by

s —1 -k 2 2
2= (uy = V%) + k, cos (a)"z + cos (a)z (A2)

= U, — oOF

The nominal control law (u,, u,) can be selected as the feedback
linearization control law

u, =v*— p[k[, cos (a)’z + cos () + kzz] (A3)
Uy = Cl)* - kma) i
which yields the linear closed-loop velocity dynamics
t=—kz, @O=—kyd (A4)

Next, we show that V|(A1),(A4) <0 for all (p, a, y, z, @) # 0.

Noting that the nominal closed-loop system (Al) and (A4)
exhibits a cascaded structure, we first consider the subsystem
(A1) restricted to the manifold {z= @& = 0}. Evaluating the total
derivative of W; along the vector field fon, in Eq. (A1) yields

Wil 2= (VW1 faom) = —ky 8> (@)p* —kea® <0 (AS)

where V represents the gradient and (-, -) represents the inner
product. Then, by adding and subtracting the terms —k,Ay and
kya in second and third rows in fyom, respectively, the a- and
w-dynamics restricted to the manifold {z =& =0} are given by

a1 [~ke —ka][a [~ (sinca)— Dy
[z;/]‘[ ko0 HW] +[ ky(sinc2a) - Da ] (A6)
_—_—— =

A 4

K(a.y)

Since the matrix A in Eq. (A6) is Hurwitz, the Lyapunov equa-
tion ATP + PA=—I has a unique, positive definite solution P,
which is given in Proposition 1. In other words, denoting
E:=[ay]", W, is a strict Lyapunov function for the linear
system E=AE, ie., (W, AE)=—|&2. Tt is easy to show that

2 2
|sinc(2s) — 1| < —|s|, and thus, we have |K(a, y)| < fkﬂ/1|a||§|.3
7 b2
The total derivative of W, along trajectories of Eq. (A6) is then
given by

Waliag) = —1€I +2&T PK(a, w) (A7)

IA

2
—|&” + —kp M (P)IE|2Jal-1€)
(A8)

IA

2 2
—1EP + Sk, A (P)IE] (e|¢|2 + “—)
T E

where the last inequality is due to Young’s inequality, and € > 0
can be chosen as an arbitrary positive number. Hence, for

|€] # 0, letting € := ————— > 0, it follows that
8O A (P)IE]

. 1 8
Wala6) < 3 & +;k,2,12/1;2w(P)|§|2052
(A9)

IA

1
) IE1° + ke QW1 (p, @, y))a’

where in the last inequality we use |£]> < 2W;(p, a, ). For |£] =0,
it follows from Eq. (A7) that Eq. (A9) is also true. Consequently,
we have

. 1
Wi, 3= (VW, from) < =3 61" =k, cos® (@p? <O (A10)

In other words, W is a global, strict Lyapunov function for the
subsystem (A1) restricted to the manifold {z =& = 0}. One can

sin(s)—s 1
*Note that sup# =—
sER s T
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easily prove that W* is also a global, strict Lyapunov function
for the subsystem (A1) restricted to the manifold {z = @ = 0}.
Denoting ¢ := [z®]", direct calculation shows that

HWWly,,,
W+ 1)?

Note that the first and third terms on the right-hand side of
Eq. (All) are negative definite terms, while the second term is
indefinite. In the second term, L, W/(W+1) is globally

bounded, i.e., 3¢>0 such that |Ly, W/(W+1)| <c. Hence,
together with Young’s inequality we have that

HW_ Lg.,,W cpuWw

.é‘< .
W+1W+1 "~ W+1

k(w1
< () 518

2 \W+1 2
The term —|¢)* in Eq. (All) dominates the term %|Zj|2 in
W

(W +1)?

uWw Ly, W

2
W+1W+1 ¢-lel

VI(AI),(A4) = (A1l)

4 (A12)

(A13)

Eq. (A13). Moreover, the term

2,2
c
the term —”(

in Eq. (A11) dominates

2 \W+1
latter has a higher degree. Away from the origin, there exists a suf-
FWW oo

(W + 1)?

2
) in Eq. (A13) near the origin, since the

ficiently small x> 0 such that continues to dominate

u? w
2 (W +1
bounded. Therefore, we conclude that V|(A1)’(A4) < 0 is negative
definite.
Finally, we conclude the proof by noting that Eq. (A3) is contin-
uous, and |(uy, u,)| — 0 as |(p, a, y, z, ®)| — 0, which estab-
lishes the small control property.

2
) , due to the fact that W/(W + 1) remains globally
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