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Safety-Critical Stabilization of Force-Controlled Nonholonomic Robots
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Abstract— We present a safety-critical controller for the
problem of stabilization for force-controlled nonholonomic
mobile robots. The proposed control law is based on the
constructions of control Lyapunov functions (CLFs) and control
barrier functions (CBFs) for cascaded systems. To address non-
holonomicity, we design the nominal controller that guarantees
global asymptotic stability and local exponential stability for the
closed-loop system in polar coordinates and construct a strict
Lyapunov function valid on any compact sets. Furthermore,
we present a procedure for constructing CBFs for cascaded
systems, utilizing the CBF of the kinematic model through
integrator backstepping. Quadratic programming is employed
to combine CLFs and CBFs to integrate both stability and safety
in the closed loop. The proposed control law is time-invariant,
continuous along trajectories, and easy to implement. Our main
results guarantee both safety and local asymptotic stability for
the closed-loop system.

I. INTRODUCTION

The stabilization problem of nonholonomic mobile robots
has been thoroughly studied since the seminal work [1],
which established the non-existence of any smooth, time-
invariant state feedback that stabilizes the origin of the
closed-loop system. To address this challenge, researchers
have developed various methods, including smooth time-
varying feedback [2], [3], discontinuous time-invariant feed-
back [4], [5], and hybrid feedback [6]. While the literature
on set-point stabilization for nonholonomic vehicles is now
well-established, the body of work addressing stabilization
with safety constraints is comparatively sparse and still has
significant gaps.

In practical applications, autonomous systems must sat-
isfy strict safety requirements, including the avoidance of
obstacles and inter-vehicle collisions. As a result, ensuring
safety is crucial in vehicle control applications. Various
approaches have been developed in the literature to achieve
safety requirements, e.g., the artificial potential field ap-
proach [7], model predictive control [8], behavior-based
methods [9], [10], and control barrier function (CBF)-based
techniques [11]-[16]. Among the various methods proposed
to achieve safety, the CBF-based approach is preferred in
many applications due to its systematic enforcement of safety
constraints, robustness against uncertainties, and ability to
handle complex constraints effectively.

Using the CBF-based approach, the problem of multi-
agent collision avoidance has been studied in [12], [14]

*This work was supported in part by GSoE at CCNY; and in part by
PSC-CUNY Award, jointly funded by The Professional Staff Congress and
The City University of New York. (Corresponding author: Bo Wang.)

The authors are with the Department of Mechanical Engineering, The
City College of New York, The City University of New York, New
York, NY 10031 USA (e-mail: than000@citymail.cuny.edu;
bwangl@ccny.cuny.edu)

Copyright ©2025 IEEE

for autonomous vehicles modeled by the double-integrator
system. For vehicles modeled by the nonholonomic unicycle
model, the safety-critical design presents additional chal-
lenges since the angular velocity does not appear through
differentiation of the position, which results in limited
control authority if the CBF is defined solely based on
the vehicle’s position [17], [18]. To address this challenge,
the high-order CBF approach proposed in [19] applies to
the unicycle model, as the control inputs appear through
a second differentiation of the position. In [20], a safe
backstepping procedure is proposed to construct (zeroing)
CBFs for higher-order systems, which can handle higher-
order systems with a mixed relative degree. In [18], an
obstacle avoidance strategy is proposed for vehicles modeled
by the nonholonomic integrator by regulating the vehicle
speed and orientation separately via two CBFs, while main-
taining nonzero forward speed in dynamic environments
using velocity obstacles. Based on time-varying CBFs, a
safety-critical controller is proposed for a kinematic unicycle
model in [21] to achieve navigation and collision avoidance
with both static and dynamic obstacles. An estimator-based
safety-critical controller is presented in [22] for formation
tracking control of nonholonomic mobile robots, ensuring
inter-agent collision avoidance using CBFs.

In this letter, we present a safety-critical controller de-
signed for the problem of stabilization for force-controlled
nonholonomic mobile robots. That is, our controller ensures
asymptotic stability for the closed-loop system while guaran-
teeing that the trajectories of the mobile robot remain within
a predefined constrained configuration space at all times. The
main contributions of this research include:

(i) We construct a strict Lyapunov function that is valid on
any compact sets for the nonholonomic robot model.
This strict Lyapunov function originates from the design
of a nominal controller in polar coordinates, which
guarantees global asymptotic stability (GAS) and local
exponential stability (LES) for the closed loop, serving
as a control Lyapunov function (CLF) in the safety-
critical design.

(i) A procedure for constructing (reciprocal) CBFs for
cascaded systems is presented, utilizing the CBF of the
kinematic model through integrator backstepping.

We employ a quadratic programming framework to combine
CLFs and CBFs to integrate both stability and safety in
the closed loop. The proposed control law is time-invariant,
continuous along trajectories, and easy to implement. Our ap-
proach applies to scenarios such as autonomous parking with
obstacle avoidance and inter-vehicle collision avoidance.



The structure of the remaining paper is as follows: In
Section II we review the background of CBFs and safety-
critical control and present an approach to construct CBFs for
cascaded systems using integrator backstepping. Section III
presents problem formulation and the main results on safety-
critical stabilization for mobile robots. Section IV presents
simulation results illustrating the practical applications of our
theoretical findings. Section V offers concluding remarks.

II. CONSTRUCTIONS OF CBFs
A. Control Barrier Functions and Safety-Critical Control

Consider a nonlinear control-affine system
&= f(z) +g(z)u (D)

where the state x € R™ and the control u € R™. We assume
that f and g are locally Lipschitz and f(0) = 0. The control
objective is to design a state feedback v = u*(x) for system
(1), resulting in the closed-loop system

i = fal) = f(z) + gla)u* (@) @

such that the trajectories of (2) remain within the interior
of a safe set C C R™ at all times, and, if possible, render
the origin of (2) asymptotically stable. The safe set C is
built as the O-superlevel set of a continuously differentiable
function h : R® — R, ie., C = {z € R" : h(z) > 0},
OC ={z e R" : h(z) = 0}, intC = {x € R™ : h(z) > 0}.
The property of safety is formalized by requiring trajectories
of (2) to remain within the safe set C at all times.

Definition 1 (Safety [23]): A set C is said to be forward

invariant for (2) if for each initial condition z, € C, the
resulting trajectory = : R>o — R™ satisfies z(¢) € C for all
t > 0. System (2) is said to be safe on a set C if it is forward
invariant.
For system (1), we assume that we know a CLF that guar-
antees stability for the closed-loop system and a CBF that
ensures adherence to constraints. The following definitions
are standard.

Definition 2 (Control Lyapunov Function (CLF)): A pos-
itive definite, proper, differentiable function V' : D — R
is a (local) CLF for system (1) on D C R™ if there exists a
function o € K such that for all x € D\{0}

LV(e)=0 = LiV(@) +a(z)<0. (2

Definition 3 (Control Barrier Function (CBF)): A differ-
entiable function B : int C — Ry is a (reciprocal) CBF with
respect to the admissible set C if B(x) — oo as ¢ — JC, and
if there exists a function avg € K such that for all z € intC

LyB(z) =0 = LyB(z)—ap(l/B(z)) <0. (3)
One effective method developed in [13] to combine a CLF
and a CBF is based on the ym-quadratic programming (QP):

min %(uTu +msT4) )
s.t. Yr(LiV(z) + a(|z|)) + LgV(x)u+ LyV(x)d <0
LyB(z) —ap(1/B(z)) + LyB(z)u <0

where m > 1, ¢ is defined as v¢(s) := vs if s > 0 and
vs(s) :==sif s <0, and v > 1. The closed-form solution to
the ym-QP problem can be obtained by applying the Karush-
Kuhn-Tucker (KKT) conditions, as described in [13].

B. Constructions of CBFs for Cascaded Systems

Cascaded structures naturally arise in mechanical and
robotic systems. For instance, in mechanical systems, the
control force or torque enters only the kinetics subsystem,
while the velocity variables impact the kinematics to control
the configuration variables through interconnection terms.
However, in general, the CBF of the kinematics subsystem
usually cannot serve as a CBF for the entire cascades
[24]. In [20], a method to construct zeroing CBFs for
higher-order systems is proposed based on the CBFs of
the reduced-order models. In this subsection, we propose
a procedure for constructing reciprocal CBFs for cascaded
systems using integrator backstepping. While many previous
works have used reciprocal CBFs to address the safety-
stabilization problem for kinematic systems, our proposed
method provides a convenient approach for extending these
solutions to kinematic-kinetic cascaded structures.

Consider the following cascaded system

iy = f(a1) + g(z1)w2 (5a)
where z := [z#{ x4]7, 21 € R", 29 € R™, and u € R™.

Given an admissible set C C R™, assume that we know a
CBF Bj(x1) with respect to the admissible set C for system
(1)'. Then there exists a “virtual” safety-critical control law
29 = a3 (x1) for (5a) such that the subsystem

&1 = fate(x1) := f(x1) + g(@1)25(21) (6)

is safe on the set C2. That is, By is a barrier function for
(6), ie., Byl < ap(1/B) for all z € intC. Under the
coordinate transformation Zo := xo — x3(x1 ), the system (5)
becomes

(7a)
(7b)

1 = fsafe(xl) + g($1)52
Iy = u— i@} =: 0.
We have the following result.
Theorem 1 (Integrator backstepping): Consider the sys-
tem (5) and the admission set C C R™. Suppose that we know

a CBF B; :intC — R+ for system (1) and a continuously
differentiable “virtual” controller z5 : R™ — R™ such that

Ly Bi(21) = LyBy(21) + Ly Bi(w1)z3(21)
< ap(1/Bi(x1)) (®)

for some ag € K and for all 27 € int C. Then the function
B :R" x R™ — R defined by

~T 77~
B(x) := Bi(z1) + T, Hi> )
n general, B1(x1) cannot serve as a CBF for the cascaded system (5).

2The safety-critical control law z2 = (1) may be given by the safety-
critical filtering [25] or given by solving the ym-QP problem (4) [13].



is a CBF for the system (5) on the set C C R™ x R, where
Tg 1= 1o —x5, the matrix H = H' >0, and x := [ To] "

Proof: Note that the function B(x) > 0 for all x €
int C, where with a abuse of notation, int C := {(x1,z2) €
R™ x R™ : h(x1) > 0}. Furthermore, B(x) — oo as x —
IC := {(x1,22) € R™ x R™ : h(x1) = 0}. Denoting

F(x):= Fate(1) +g(£1)j2} and G := {O}

0 1
the system (7) can be written as
% = F(x) + Gi. (10)
Then we have
LgB(x) = axggb =27, H, (11)

which implies that L B(x) = 0 <= Z2 = 0 due to that the
matrix H is positive definite. Therefore, on the set {2 = 0},
we have

o 5‘B1 (1’1)

LFB(X) To=0 — 8561 fsafe(zl) (12)
and ) L
s (563) o " (5r): @
Finally, it follows from (8) that
LeB(x) =0 = LpB(x) —ap(1/B(x)) <0, (14)

which verifies the condition (3) and completes the proof. W

III. PROBLEM FORMULATION AND MAIN RESULTS

Consider the force-controlled model of the nonholonomic
mobile robots

T =wvcosf
1y =wvsinf (15)
6=w

{1.}:“1 (16)
w = U

where (x,y) represents the position of the robot in Cartesian
coordinates; 8 denotes the robot’s orientation; v and w denote
the forward and angular velocities, respectively; u; and us
denote translational and angular acceleration control inputs
acting on the robots, respectively. Equation (15) corresponds
to the velocity kinematics model, while (16) corresponds to
the (simplified) force-balance kinetics equations.

The safety-critical stabilization problem involves rendering
the origin of the closed-loop system asymptotically stable
while ensuring that the trajectories of the closed-loop system
remain within a predefined safe set C at all times ¢ > ¢.

As discussed in Section II, we address this problem using
the CLF-CBF ym-QP approach. Specifically, we construct
the CLF and CBF for the nonholonomic mobile robot system
separately. The control law is then derived from the ym-
QP (4). However, to deal with the nonholonomicity, we
perform the stabilization task and construct the CLF in polar
coordinates, while to ensure safety, we construct the CBF in
Cartesian coordinates.

A. Stabilization and Constructions of CLFs

Due to the nonholonomicity, directly finding a CLF for the
mobile robot is not a trivial task. Therefore, we first design
a stabilization controller for the robot in polar coordinates
and then construct a strict Lyapunov function for the closed
loop. Later, this strict Lyapunov function serves as the CLF
in the safety-critical control design.

In polar coordinates, the position of the mobile robot may
be represented by the distance p and the bearing angle ¢,

ie.,
p=Vat+y?

As in [4], [26], defining « := 6 — ¢, the kinematics equations
(15) become

¢ = atan2(y, ). 17

p =1vcosa
. v .
¢ = g sin « (18)

. v .

o0 =w— —sina.

p
We address the stabilization problem by separating the stabi-
lization tasks at the kinematics and the kinetics levels. Specif-
ically, we design virtual control laws (v*,w*) to stabilize the
origin for the error kinematics (18). Then, for the dynamics
(16), we design a controller to ensure (v,w) — (v*,w*).
1) Control of the error kinematics: It follows from [26,

Proposition 1] that the virtual control laws (v*,w*) may be
designed as

v* = —k,cos(a)p

w* = —kqa — k,sinc(2a) (a — Ao)

(192)
(19b)

where k,, k,, and X\ are positive control gains, and the
function sinc(-) is defined as sinc(s) := sin(s)/s if s # 0
and sinc(0) := 1. Note that the function sinc(-) is smooth
and bounded on R, i.e., sinc(s) € (—0.22,1] for all s € R.
The closed-loop system with the virtual control laws (v, w) =
(v*,w*) becomes

p = —k,cos(a)’p (20a)
¢ = —k,sinc(2a)a (20b)
& = —kqa + Ak, sinc(2a)¢. (20c)

A weak Lyapunov function for the system (20) is given by
Vi(p, ¢, @) := 3(p* + Ap? + a?), which yields

Vi = —k,cos(a)?p® — kaa® < 0. 2D

We conclude that the origin (p, ¢, o) = (0,0, 0) is asymptot-
ically stable for (20) following from Barbashin-Krasovskii-
LaSalle’s invariance principle [26, Proposition 1].

2) Velocity tracking: Using (v,w) = (v*,w*)+(?,®), the
error kinematics become

p —k, cos(a)?p pcosa 0 .

0| = —k, sinc(20) o + | sina0 [~]

e —koa + Ak, sine(2a)¢ —sina 1
f(p¢s) 9(p;@)

(22)



where z := 0/p. Obviously, (0,0) — 0 does not guarantee
the boundedness of trajectories of (22) because z = ¥/p
may approach infinity even when v — 0. Therefore, we
must analyze the error dynamics in the coordinates of (z,®),
where uy — 0"

z = 5 + kpcos(a)?z — cos(a)z?  (23a)
w = U — w*

(23b)
Hence, choosing the control laws (ug,us) as

up = 9* — p(k, cos(a)?z — cos(a)2® + k,z) (24a)

Uy = wW* — k@ (24b)

yields the linear dynamics
z = —kyz (25a)
w = —k,o. (25b)

The closed-loop system (22), (25) has a cascaded structure,
and the cascades argument [27, Theorem 2] may be invoked
to assess GAS of the origin. We have the following result.
Proposition 1 (Nominal controller): Consider the mobile
robot model (18) and (16) together with the control laws (19)
and (24), where k,, ko, k., k., and A are positive constants.
Then the origin of the closed-loop system (22), (25) is GAS.
Proof: We regard (22) as a nominal system (20) with in-
terconnection terms. The origin of the nominal system (20) is
GAS, as follows from (21) and the invariance principle. The
linear system (25) is globally exponentially stable (GES).
The interconnection matrix g(p, «) satisfies the condition of
linear growth in |(p, ¢, a)|. Hence, the origin of the cascaded
system (22) and (25) is GAS following from [27, Theorem
2]. ]
Remark 1: The nominal controller (19) and (24) is smooth
along trajectories and time-invariant, and it guarantees GAS
for the closed-loop system in polar coordinates, i.e., GAS of
the origin of (22), (25). However, in Cartesian coordinates
the nominal controller only guarantees the attractivity of the
origin. Thus, Brockett’s necessary condition is not violated.
3) Constructions of strict Lyapunov functions: Our objec-
tive is to construct a strict Lyapunov function for the closed-
loop cascaded system (22) and (25) to serve as a CLF. To this
end, we first consider (20b)-(20c). By adding and subtracting
the term k,a in (20b), and the term Ak, ¢ in (20c), we obtain
the output-injection form

il = [ )+ [ et

A K(a,¢)

. (26)

Noting that sinc(2a) — 1 as o — 0, it follows that
K(a,¢) — 0 as the ‘output’” o — 0. The matrix A is
Hurwitz, and thus, there exists a matrix P = P' > 0 such
that

ATP+PA=—1I. (27)
Consider the Lyapunov candidate
Va(€) == €' P¢ (28)

for (20b)-(20c), where ¢ := [a ¢] . Note that for any r > 0
and for all |¢] < 7, we have |K(«, ¢)| < ¢ [€] - |«|, where ¢
is a positive constant. Therefore, taking the time derivative
of (28) yields
Valaey = —|€1* + 2T PK (e, )
< —[€” + 2erAm (P)[€] - |

2
—|€* + erAn (P) (O; + 5|§|2> (29)

IN

where \ps(P) represents the maximum eigenvalue of P,
and € > 0 can be chosen arbitrarily small. Choosing ¢ :=
1

e (P) yields

: 1
Vale) < —§|§\2 +2¢2r% M3, (P)a?, (30)

which is valid for all |¢| < r and for any r > 0. We have
the following results.
Proposition 2: The function

Vip, ¢, @) := v(r)Vi(p, ¢, @) + Va(§)

defined on B, := {|(p, ¢, )| < r} for any r > 0 is a strict
Lyapunov function (in the large) for (20), where v(r) :=
2¢2r2)2 (P) /kq.-

Proof: Taking the time derivative of (31) yields

€1y

. 1
Vo) < —v(r)k, cos(a)?p® — §‘€|2a (32)
which implies that V is negative definite. [ ]

Proposition 3: For any r > 0, there exists a constant
i(r) > 0 such that for all u € (0, ii(r)], the function

Vr(p7 ¢a a, Z,L:}) = M]D(V(p, ¢7 0&) + 1) + U(Z7 (:))

defined on B, x R? is a strict Lyapunov function (in the
large) for the cascaded system (22) and (25), where

- 1 /22 &?
U(z,0) := 5 (k+k) .

Proof: First, the function V), is positive definite because

V' is positive definite and ;& > 0. The derivative of V), along
trajectories of (22) and (25) is given by

= M M — |<|2

V4+1 V+1

where f and g are defined in (22), ¢ := [z @)T, and L;V

is the same as V|xg) in (32), which is negative definite in

(p, ¢, ). The second term on the right-hand side of (35) is
indefinite, and following Young’s inequality we have

(33)

(34)

Vv, + (35)

2
plgV Lo # [LyV|
2797 < = Ll bt A
a1 S Sy
1 p? |LyV|®
< S|P+l
S5+ S v (36)

Since both L¢V and |L,V|? are quadratic functions in
(p,¢,a) in B, there exists a sufficiently small © > 0
such that uL;V dominates §|L9V\2. Moreover, the term
—|¢|? in (35) dominates the term 3|¢|? in (36). Hence, V),
is negative definite, which completes the proof. [ ]



B. Construction of the CBF

Noting that the mobile robot (15)-(16) has a cascaded
structure as in (5), the construction of the CBF for the mobile
robot directly follows from Theorem 1.

Proposition 4: Consider the system (15)-(16) and assume
that the admissible set C := {(z,y) € R? : h(x,y) > 0} is
given, where h : R? — R is continuously differentiable.

(i) For the kinematics system (15), if we consider (v,w)
as the input, then By(x,y) := 1/h(z,y) is a CBF for
(15).

(ii)) For the cascaded system (15)-(16), the function
B(x) := Bi(z,y) + n"Hn is a CBF, where x :=
zyvw,n:=pw',and H=HT >0.

Proof: (i) The function B; is continuously differen-
tiable in int C because h(x,y) > 0 for all (x,y) € intC.
Furthermore, By — oo as (z,y) — 9C. Moreover, for all
(z,y) € intC and any ap € K, we have ap(1/By(z,y)) =
ap(h(z,y)) > 0. Due to that the kinematics system (15) is
driftless (i.e., f = 0), the term LB, (x) in (3) is zero, and
L¢By(x,y) —ap(l/Bi(z,y)) < 0 for all z € intC. Thus,
we verify the condition (3).

Item (ii) follows directly from Theorem 1 by noticing

that for the kinematics system (15) the velocity control law

(v,w) = (0,0) is a virtual safety-critical control law. [ |

C. Safety-Critical Control Design

We have shown that V), is a strict Lyapunov function for
the closed-loop system (22) and (25), and thus, it serves as
a CLF for system (18) and (16). Furthermore, according to
Proposition 4, B(x) := By (z,y)+n" Hn is a CBF for (15)-
(16). By combining both the stability and safety constraints,
the safety-critical stabilization control law is derived by
solving the ym-QP problem.

For the sake of concision, we define @ := [%,ug]T,
fi(p, ¢, a) := [vcos(a) 7 sina w — ¥ sin o] T,
. felp, 6, 0) 0
fii= =5 +k cos(oz.)fz —cos(a)2?|, g1 := { ?}:2] ;
—w
fo = [v cosf vsinf w 0 O}T go i= O3x
' ’ © [diag(p,1)]

Then, for any r > 0, the ym-QP problem is defined as

min %(z—ﬁa +md ") (37)

8.L. Fl = ’Vf<Lf1VT + a(|X|)) + Lglv”’a + L91V7’5 S 0
Fy:=LyB(x)—ap(1/B(x))+ Lg,B(x)u <0

where Y :=[p ¢ a 2 &', ap € K, o := e‘fj_‘l/ -3¢
and € > 0 is chosen to be sufficiently small. The closed-
form solution of the ym-QP problem (37) can be obtained
by invoking the KKT conditions. We refer the readers to
[13].

Proposition 5: The ym-QP problem (37) is feasible, and
under the resulting control law the set intC is forward
invariant. If 0 € int C, then the barrier constraint is inactive
(F» < 0) around the origin, and the resulting control law is

2

Fig. 1. Tllustration of the mobile robot paths in stabilization (Example 1).
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Fig. 2. Convergence of the configuration variables of the mobile robot in
polar coordinates (Example 1).

continuous. If we select 7;{—:_”1 = 1, the origin of the closed-
loop system is locally asymptotically stable.

We omit the proof since it is closely parallel to that of
[13, Theorem 1]. It should be noted that the ym-QP design
(37) may lead to undesirable equilibria because it prioritizes
keeping the admissible set C invariant while attempting to

achieve stabilization if possible [13].

IV. SIMULATION RESULTS

We present two simulation examples to illustrate the
performance of the proposed controller. In each example,
the proposed CLF-CBF ym-QP controller is compared with
the nominal controller (19) and (24) from Proposition 1 and
the CLF-based pointwise minimum norm controller [28].

Example 1: Suppose that we want to stabilize the non-
holonomic mobile robot to the origin while staying within
the admissible set defined by C := {(x,y) € R? : h(x,y) =
1+ — 8% > 0}. To this end, we define the CBF
B(x) := By(x,y) + 0.1(v? + w?) where x := [z y v w]
and Bi(x,y) := 1/h(x,y) with ap(s) := s. The initial
conditions of the mobile robot are randomly chosen as
(z,y,0,v,w)(0) = (7,0.63,2.55, —3.73,4.13). We select
control parameters as A = 3, k, = 2, ko, = 4, k, = 6,
k, =6, v =10, p = 1, m = 2, and v = 1.5. All
parameters are given in SI units. The simulation results are
shown in Figs. 1 and 2, which depict the physical path and
configuration trajectories of the robot.

Example 2: We assume that the admissible set is given by
C:={(z,y) € R?: h(z,y) = 1 — z + 8y*> > 0}. We define
the CBF B(x) := Bi(z,y)+v*+w? with ap(s) := s, where
Bi(z,y) := 1/h(z,y). The initial conditions are randomly
chosen as (z,y,0,v,w)(0) = (—5,4.58,4.65, —3.42,4.71).



Fig. 3. Illustration of the mobile robot paths in stabilization (Example 2).

p [m]
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Fig. 4. Convergence of the configuration variables of the mobile robot in
polar coordinates (Example 2).

The control parameters are set to be the same as in Example
1. The simulation results are shown in Figs. 3 and 4, which
demonstrate that the proposed CLF-CBF ym-QP controller
effectively achieves parking with obstacle avoidance.

V. CONCLUSION

In this letter, we solve the stabilization problem with
guaranteed safety for force-controlled nonholonomic mobile
robots. Our main contributions lie in the construction of a
strict Lyapunov function that is valid on any compact sets for
the nonholonomic robot model in polar coordinate, serving
as a CLF in the safety-critical stabilization design, and the
construction of reciprocal CBFs for (kinematics-kinetics)
cascaded systems, utilizing the CBF of the kinematic model
through integrator backstepping. Quadratic programming is
employed to integrate both stability and safety in the closed
loop. Future research will focus on extending the presented
approach to safety formation control for multi-agent systems.
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