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Abstract— In this work, we solve the distributed leader-
follower simultaneous formation regulation and tracking control
problem for nonholonomic mobile robot networks without
global position measurements. The controller is designed based
on the formation error dynamics in polar coordinates. Under
the assumption of the network topology containing a directed
spanning tree, we establish global asymptotic stability and
local exponential stability for the origin of the error system
in polar coordinates using Lyapunov’s direct method, and
correspondingly, establish the exponential attractivity for the
origin in Cartesian coordinates with the domain of attraction
in any compact set. The proposed controller is time-invariant,
continuous along trajectories, and does not require global
position measurements. Simulations are presented to illustrate
the robust performance of the proposed control method.

I. INTRODUCTION

A. Motivation and Related works

The study of motion control of nonholonomic vehicles has
been carried out by the control community since 1990’s due
to its intrinsic nonlinear properties and broad practical appli-
cations. One of the crucial characteristics of nonholonomic
systems is that they cannot be asymptotically stabilized
using continuous time-invariant state-feedback control law.
This is because nonholonomic systems do not meet the
Brockett’s necessary condition for asymptotic stabilization
[1]. To circumvent this obstacle, continuous time-varying
[2], discontinuous time-invariant [3], and hybrid [4] feed-
back control systems have been developed in the literature.
Moreover, instead of seeking the asymptotic stability of the
closed-loop system, continuous time-invariant feedback also
has been considered in the literature that guarantees only
attractivity for the origin of the closed-loop system [5], [6].
Another key feature of nonholonomic systems is that there
exists no universal continuous controller (even time-varying)
that can track an arbitrary feasible trajectory [7]. Unlike the
case of holonomic systems, the set-point regulation cannot
be viewed as a special case of trajectory tracking control
for nonholonomic systems. Thus, the set-point regulation
problem and the trajectory tracking control problem are
usually studied as two distinct problems in the literature.

Cooperative control of multi-vehicle systems has received
much attention during the last decade due to advantages
over single vehicles including higher efficiency, robustness,
and flexibility in various missions [8]. Distributed formation
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control, which is to drive a group of agents to form a
certain geometric pattern using local interactions, can be
viewed as the classical stabilization or trajectory tracking
control problem generalized to the multi-agent systems.
Specifically, each follower in the network utilizes only local
information to achieve the global formation task. Similar
to the case of single nonholonomic systems, the formation
stabilization and the formation tracking control problems for
multi-nonholonomic-vehicle systems are typically studied as
two separate problems. Thus, each agent needs to know the
control task beforehand, and switch between the two different
types of controllers. However, switching between controllers
may be impractical when the vehicle network operate in a
fully autonomous mode [9], [10]. Consequently, when no
prior information on the group reference is available to the
followers, it is more practical if the two problems can be
solved using a single control architecture.

Many formation stabilization controllers have been de-
veloped for nonholonomic mobile robots, such as uniform
δ-persistently exciting (uδ-PE) controller based on time-
varying feedback [11], [12], and discontinuous feedback
[13]. Also, numerous formation tracking control approaches
have been proposed in the literature such as [14], [15].
However, only few works have been performed on the
simultaneous formation stabilization and tracking control
problem. Using the distributed estimation strategy, the prob-
lem was solved for mobile robots in [16] in the sense of
global uniform ultimate boundedness. In [17], a simultaneous
formation stabilization and tracking controller was proposed
for mobile robots using a cascade design. Recently, a uδ-PE
time-varying controller was proposed to solve the simultane-
ous formation stabilization and tracking control problem for
heterogeneous planar underactuated vehicle networks in [10].
However, one of the side effects of the uδ-PE controllers
presented in [10]–[12], [17] is the undesired oscillating
behavior of the trajectories. Moreover, due to the vanishing
PE property, the convergence rate becomes much slower as
the trajectory converges to the origin. On the other hand,
the discontinuous feedback such as the one in [13] may be
difficult to implement on vehicle systems, which makes such
controllers less practical.

These shortcomings may be overcome by designing con-
trollers in polar coordinates. In [5], a smooth time-invariant
controller is proposed to steer the mobile robots to the
origin based on a weak Lyapunov function in polar coordi-
nates. However, the polar coordinates introduce singularity
precisely at the origin, and only asymptotic attractivity is
established using the invariance principle. Thus, no (expo-

2022 American Control Conference
Atlanta, USA, June 8-10, 2022

978-1-6654-5197-0/$31.00 ©2022 AACC 5069



nential) convergence rate is guaranteed. Later, a sliding mode
controller is proposed in [18] to solve the trajectory tracking
problem of mobile robots in polar coordinates. Using a
similar idea as in [18], a consensus tracking controller
is proposed in [19] for multi-vehicle systems. Recently, a
smooth time-invariant controller has been proposed in [20]
to solve the consensus problem for mobile robot networks.
However, the control strategies proposed in [18], [19] require
global position information of each agent in the network.

B. Main Contributions and Outline

In this work, we develop a distributed leader-follower for-
mation controller for nonholonomic mobile robot networks.
The main contributions are summarized as follows:

1) We solve the simultaneous formation regulation and
tracking control problem for mobile robot networks
using a single time-invariant control architecture. The
controller can be used for both tasks without prior
information.

2) We establish global asymptotic stability (GAS) and
local exponential stability (LES) for the origin of forma-
tion error systems in polar coordinates, and correspond-
ingly, establish the exponential attractivity for the origin
in Cartesian coordinates with the domain of attraction
contained in an arbitrarily large compact set.

3) The proposed control law does not require any global
position measurements of the followers, i.e., the con-
troller requires only local motion information, which
can be measured directly using the on-board sensors.
Moreover, the control law is continuous along trajec-
tories, relatively simple, and thus is practical for real-
world applications.

The rest of this paper is organized as follows. Preliminaries
and problem formulation are given in Section II. Section
III presents the controller design and the stability analysis.
Simulation examples are presented in Section IV. Finally,
the concluding remarks are provided in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: Let Rn denote the n-dimensional Euclidean
space; R>0 the set of all positive real numbers; | · | the
Euclidean norm of vectors in Rn. Let Br := {x ∈ Rn :
|x| ≤ r}. The function sinc : R → R is defined for all
x 6= 0 by sinc(x) = sin(x)/x, and for x = 0 by the limiting
value, i.e., sinc(0) = 1. Note that the function sinc(·) is
bounded and smooth everywhere on its domain. We use the
bold and non-italicized subscript i to denote the index of an
agent in the multi-agent systems considered in this paper.

A. Model of Mobile Robot Networks

Consider a group of N + 1 nonholonomic two-wheeled
mobile robots, where the mobile robots are numbered i =
0, 1, . . . , N with 0 representing the real group leader and
1, . . . ,N the followers, as shown in Fig. 1. The kinematic
model for the i-th mobile robot is given by

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = ωi, (1)

Leader 

Follower 

Fig. 1. Top view of the leader-follower formation of nonholonomic wheeled
mobile robots.

where (xi, yi) ∈ R2 are the Cartesian coordinates of the
center of mass of the robot, θi ∈ R is its orientation angle, the
control inputs vi and ωi are the linear and angular velocities
of the mass center. Let us denote qi := (xi, yi, θi). We
consider only the kinematic model in this work because
once the desired velocities vi(t) and ωi(t) are obtained, the
actual control forces on the wheels can be calculated using
backstepping technique or cascade approach based on the
dynamic force-balanced equations.

The communication topology of the mobile robot network
is modeled by a directed graph G = (V, E) where V =
{0,1, . . . ,N} and E ⊆ V×V represent its sets of nodes and
edges, respectively. The set of neighboring nodes with edges
connected to the i-th node is denoted by Ni = {j ∈ V :
(i, j) ∈ E}. The edges represent communication between the
nodes such that node i obtains information from node j, if
j ∈ Ni, as shown in Fig. 2. The constant weighted adjacency
matrix A = [aij] associated with G is defined according to
the rule that aij > 0 if j ∈ Ni and aij = 0 otherwise.
We assume graph G has no self-loop or loop and contains
a directed spanning tree, which implies that there exists at
least one directed path consisting of communication edges
from the group leader to each follower in the network [8].

B. Problem Statement

We assume that the reference trajectory of the group leader
is generated by the following virtual mobile robot

ẋd = vd cos(θd), ẏd = vd sin(θd), θ̇d = ωd, (2)

where (xd, yd, θd) denotes the configuration of the virtual
mobile robot, and (vd, ωd) its linear and angular velocities.
We make the following assumption on the reference trajec-
tory of the group leader.

Assumption 1: The reference trajectory (xd, yd, θd, vd, ωd)
is only available to the group leader. Furthermore, the ref-
erence velocity (vd(t), ωd(t)) is continuously differentiable,
bounded. Moreover, the reference velocity (vd(t), ωd(t)) sat-
isfies either of the following mutually exclusive conditions:
A1) There exist T and µ1 > 0 such that∫ t+T

t

|ωd(τ)|dτ ≥ µ1, ∀t ≥ 0. (3)
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Fig. 2. Communication network graph of the mobile robot networks.

A2) There exist µ2 > 0 such that∫ ∞
0

(|vd(τ)|+ |ωd(τ)|) dτ ≤ µ2. (4)

The objective of formation regulation and tracking is to
design a distributed controller for each mobile robot such
that it coordinates its motion relative to its neighbors, and the
network asymptotically converges to a predefined geometric
pattern under Assumption 1. The geometric pattern of the
mobile robot network in terms of planar position is defined
by a set of constant offset vectors {(dxij, d

y
ij) ∈ R2 : i, j ∈

V, i 6= j}. Specifically, under Assumption 1, we will design
a control law (vi, ωi) for each agent without global position
measurements such that: i.) all states in the closed-loop
system are bounded; ii.) all the mobile robots in the network
maintain a prescribed formation in the sense that for all
i ∈ V ,

lim
t→∞

∑
j∈Ni

∣∣∣∣∣∣
xi(t)− xj(t)− dxij
yi(t)− yj(t)− dyij
θi(t)− θj(t)

∣∣∣∣∣∣ = 0. (5)

Remark 1: In Assumption 1, A1 implies that ωd(·) is PE,
and A2 implies that the reference velocity (vd, ωd) belongs to
L1 space, which means that the reference velocity converge
to zero sufficiently fast. Note that the formation regulation
and tracking problem covers two important cases:
Case 1 (Formation Regulation): If vd(t) ≡ ωd(t) ≡ 0, then

the formation regulation and tracking problem is
reduced to the formation regulation problem.

Case 2 (Formation Tracking): If lim
t→∞

[v2
d(t) + ω2

d(t)] 6= 0,
then the formation regulation and tracking problem
is reduced to the formation tracking control problem.

III. FORMATION CONTROL DESIGN

A. Error Dynamics in Polar Coordinates

For more compact notations, we denote the reference
trajectory for each i-th follower byx̄i(t)ȳi(t)

θ̄i(t)

 :=
1∑

j∈Ni
aij

∑
j∈Ni

aij

xj(t) + dxij
yj(t) + dyij
θj(t)

 , (6)

and denote the reference velocity by[
v̄i(t)
ω̄i(t)

]
:=

1∑
j∈Ni

aij

∑
j∈Ni

aij

[
vj(t)
ωj(t)

]
. (7)

We will use the errors x̃i = xi − x̄i, ỹi = yi − ȳi, and θ̃i =
θi− θ̄i in the control design, and only relative measurements
are needed to construct these signals.

For each agent, we define the position formation error in
polar coordinates as

ρi := |(xi − x̄i, yi − ȳi)|, (8a)
φi := atan2(yi − ȳi, xi − x̄i), ∀ρi > 0, (8b)

where ρi and φi denote the distance and the polar angle
between the agent itself and its reference trajectory, respec-
tively. The polar angle φi can also be obtained directly using
the line-of-sight angle and the orientation angle, as shown
in Fig. 1. Note that the transformation (8a)-(8b) maps the
formation error (x̃i, ỹi, θ̃i) ∈ R2\{(0, 0)} × R into polar
coordinates (ρi, φi, θ̃i) ∈ R>0×R2. Indeed, (ρi, θ̃i) = (0, 0)
is equivalent to (x̃i, ỹi, θ̃i) = (0, 0, 0). Thus, the error states
in polar coordinates converging to zero implies the error
states in Cartesian coordinates also converging to zero, which
implies the formation objective (5) is achieved.

Taking time derivative of (8a)-(8b) along trajectories of
(1), the error dynamics in polar coordinates are given by

ρ̇i = vi cos(θi − φi)− v̄i cos(θ̄i − φi), (9a)

φ̇i =
1

ρi

[
vi sin(θi − φi)− v̄i sin(θ̄i − φi)

]
, (9b)

˙̃
θi = ωi − ω̄i. (9c)

Remark 2: The formation stabilization problem studied
in [10], [17] requires the origin of the error system to be
asymptotically stable. However, it is noted that the mapping
(ρi, φi, θi) 7→ (x̃i, ỹi, θ̃i) is not a diffeomorphism. Hence,
the asymptotic stability of the origin in the polar coordinates
may not be mapped into Cartesian coordinates. In this case,
only attractivity is guaranteed for the origin in Cartesian co-
ordinates. Thus, in contrast with formation stabilization, we
only focus on formation regulation in this work, where only
attractivity is required in the formation control objective.

B. Formation Control Design and Stability Analysis

To begin with, we first consider the regulation problem
for each vehicle in the network, i.e., v̄i(t) ≡ ω̄i(t) ≡ 0.
Without loss of generality, we assume that the desired group
orientation θd ≡ 0. In this case, the error equations (9a)-(9c)
reduce to

ρ̇i = vi cosαi, φ̇i =
vi
ρi

sinαi, α̇i = ωi −
vi
ρi

sinαi, (10)

where αi := θ̃i − φi. Consider the following Lyapunov
function candidate

Vi(ρi, φi, αi) =
1

2

(
λ1ρ

2
i + λ2φ

2
i + α2

i

)
, (11)

where λ1, λ2 are positive constants. The time derivative of
Vi along trajectories of (10) is given by

V̇i = λ1ρivi cosαi + λ2φi
vi
ρi

sinαi + αi

(
ωi −

vi
ρi

sinαi

)
.
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Consider the following control input

vi = −k1iρi cosαi, (12)
ωi = −k2iαi − k1i sinc(2αi)(αi − λ2φi), (13)

where k1i, k2i are positive control gains. In this case, it
follows that for the closed-loop error system (10), (12), (13)
given by

ρ̇i = −k1i cos2(αi)ρi, (14a)

φ̇i = −k1i sinc(2αi)αi, (14b)
α̇i = −k2iαi + λ2k1i sinc(2αi)φi, (14c)

the time derivative of Vi(·) along the trajectories of (14a)-
(14c) satisfies

V̇i = −λ1k1i cos2(αi)ρ
2
i − k2iα

2
i ≤ 0. (15)

Note that (ρi, φi, αi) → 0 implies that (ρi, φi, θ̃i) → 0. We
have the following result.

Proposition 1: Consider the system (14a)-(14c). If k1i, k2i

and λ2 are positive constants, then the origin (ρi, φi, αi) =
(0, 0, 0) is GAS. Furthermore, the trajectories of (14a)-(14c)
with initial conditions contained in the compact set Br
exponentially converge to the origin for each r > 0.

Proof: It follows from (15) that the origin is globally
stable. Note that V̇i ≡ 0 implies that ρi ≡ αi ≡ 0, and it
follows from (14c) that the largest invariant set contained in
the set where V̇i ≡ 0 is a point ρi = αi = φi = 0. Thus,
it follows from the Krasovskii-LaSalle’s invariance principle
that the origin is GAS.

To see the exponential convergence of the trajectory in any
compact set Br, we write (14b)-(14c) in the following form[
α̇i

φ̇i

]
=

[
−k2i λ2k1i

−k1i 0

]
︸ ︷︷ ︸

A

[
αi

φi

]
+

[
−λ2k1i (1− sinc(2αi))φi
k1i (1− sinc(2αi))αi

]
︸ ︷︷ ︸

K(αi,φi)

.

The matrix A is Hurwitz, which implies there exist matrices
P = P> > 0 and Q = Q> > 0 such that A>P +
PA = −Q. Denote ξ = [αi, φi]

>, and it follows from
the property of sinc(·) function and the global boundedness
of trajectories that for any r > 0 and for all |ξ| < r, we
have |K(αi, φi)| ≤ κ(|ξ|)|αi|, where κ(·) is a bounded non-
decreasing function. Then, the total derivative of W = ξ>Pξ
along the trajectories of (14b)-(14c) is given as

Ẇ = −ξ>Qξ + 2K>Pξ

≤ −ξ>Qξ + 2λmax{P}κ(|ξ|)|αi||ξ|

≤ −ξ>Qξ + λmax{P}
(
κ(r)2|αi|2

ε
+ ε|ξ|2

)
.

where ε > 0 can be chosen arbitrarily small. Choosing
ε = 1

2λmin{Q}/λmax{P} yields Ẇ ≤ − 1
2λmin{Q}|ξ|2 +

2κ(r)2(λmax{P}2/λmin{Q})|αi|2. Consider the function

Wr(ξ) = W (ξ) +
νr
2

(
λ2φ

2
i + α2

i

)
,

where νr = 2κ(r)2(λ2
max{P}/λmin{Q})/k2i. Then, for any

r > 0 and for all |ξ| < r, we have Ẇr ≤ − 1
2λmin{Q}|ξ|2.

Note that Wr(ξ) is a quadratic strict Lyapunov function
for (14b)-(14c) on any compact set Br. Thus, we conclude
exponential convergence of trajectories of (14b)-(14c) on any
compact set Br. The exponential convergence of trajectories
of (14a) can be easily obtained by rewriting (14a) into
ρ̇i = −k1iρi + k1i(1− cos2(αi))ρi, and considering the last
term as an exponential vanishing disturbance (since ρi is
bounded) which completes the proof.

Remark 3: Although we prove the GAS for the origin of
(14a)-(14c), the error system is defined only for ρi > 0. To
deal with the case ρi = 0, which is equivalent to (x̃i, ỹi) =
(0, 0), we switch the control law to

vi = 0, ωi = −k2iθ̃i − k1i sinc(2θ̃i)θ̃i, (16)

when ρi = 0. The GAS and exponential convergence also can
be proved using the strict Lyapunov functionWr constructed
in the proof of Proposition 1. With the common Lyapunov
functionWr, the closed-loop system is GAS with trajectories
exponentially converging to the origin under the switching
rule. It is noted that although the controller is switching, it
is continuous along trajectories.

Proposition 1 can be applied to the global leader 0 in the
formation regulation problem, i.e., vd(t) ≡ ωd(t) ≡ 0. Due
to the hierarchy structure of the communication topology,
the information of the reference signal is transformed to the
followers. Thus, for the followers in the formation regula-
tion, the reference velocity (v̄i, ω̄i) may only exponentially
converge to the zero. In this case, under the control law (12)-
(13) the error system is given by

ρ̇i = −k1i cos2(αi)ρi − v̄i cos(θ̄i − φi),

φ̇i = −k1i sinc(2αi)αi −
v̄i
ρi

sin(θ̄i − φi), (17)

α̇i = −k2iαi + λ2k1i sinc(2αi)φi +
v̄i
ρi

sin(θ̄i − φi)− ω̄i.

Proposition 2: Consider the system (9a)-(9c). Select the
control law (12)-(13) when ρi > 0, and switch it to (16)
when ρi = 0. If k1i, k2i and λ2 are positive constants
and the reference velocities v̄i(t) and ω̄i(t) converge to
zero exponentially, then the origin (ρi, φi, αi) = (0, 0, 0)
is GAS. Furthermore, the trajectories of the closed-loop
system with initial conditions contained in the compact set
Br exponentially converge to the origin for each r > 0.

Proof: We first prove the input-to-state stability (ISS)
of the (αi, φi)-subsystem in (17) by viewing the reference
velocity terms as inputs. For any δ > 0 and for any ρi ≥ δ,
we have 1/ρi ≤ 1/δ. Consider the (αi, φi)-dynamics. It
follows from the proof of Proposition 1 that the nominal
part (14b)-(14c) has a quadratic strict Lyapunov function
Wr(ξ) on arbitrarily large compact set Br, which satisfies
|∂Wr(ξ)/∂ξ| ≤ c|ξ| with c > 0. Evaluating the time
derivative of Wr(ξ) along the trajectory of (17), yields

Ẇr ≤ −
1

2
λmin{Q}|ξ|2 +

∣∣∣∣∂Wr

∂ξ

∣∣∣∣ ∣∣∣∣[ − v̄iρi sin(θ̄i − φi)
v̄i
ρi

sin(θ̄i − φi)− ω̄i

]∣∣∣∣
≤ −1

2
λmin{Q}|ξ|2 +

√
2c|ξ|

(
|v̄i|
δ

+ |ω̄i|
)
. (18)
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Then, for 0 < η < 1, we have Ẇr ≤ − 1
2λmin{Q}(1−η)|ξ|2,

for all |ξ| ≥ 2
√

2c(|v̄i| /δ+ |ω̄i|)/(λmin{Q}η), which shows
that (αi, φi)-subsystem is ISS with respect to (|v̄i|/δ +
|ω̄i|). Then, GAS and exponential convergence of trajectories
come from the the exponential convergence of the input
(|v̄i|/δ + |ω̄i|). The GAS and exponential convergence for
ρi-subsystem come from rewriting the equation into ρ̇i =
−k1iρi + k1i(1− cos2(αi))ρi − v̄i cos(θ̄i − φi) and viewing
the last two terms as exponentially vanishing inputs. In the
case of ρi = 0, the ISS and exponential convergence can
be easily shown using the same Wr(ξ). With the common
Lyapunov function Wr, the closed-loop system is GAS with
trajectories exponentially converging to the origin under the
switching rule.

While Proposition 2 can be used to solve the formation
regulation problem, next we consider the formation tracking
problem. Here, we first assume that for each agent, the
reference angular velocity ω̄i(t) is PE, i.e., there exist Ti
and µ1i > 0 such that∫ t+Ti

t

|ω̄
i
(τ)|dτ ≥ µ1i, ∀t ≥ 0. (19)

We consider the following control law when ρi > 0,

vi = v̄i(t)− k1iρi cosαi, (20)

ωi = ω̄i(t)− k2iθ̃i, (21)

which yields the closed-loop system

ρ̇i = −k1i cos2(θi − φi)ρi + v̄i
[
cos(θi − φi)− cos(θ̄i − φi)

]
,

φ̇i = −k1i

2
sin[2(θi − φi)]−

v̄i
ρi

[
sin(θi − φi)− sin(θ̄i − φi)

]
,

˙̃
θi = −k2iθ̃i. (22a)-(22c)

When ρi = 0, the control law is switched to

vi = v̄i(t), ωi = ω̄i(t)− k2iθ̃i. (23)

Proposition 3: Consider the system (9a)-(9c). Select the
control law (20)-(21) when ρi > 0, and switch it to (23) when
ρi = 0. Assume that (19) holds. If 0 < k1i < 2µ1i/Ti and
k2i > 0, then |(ρi(t), θ̃i(t))| → 0 exponentially as t→∞.

Proof: For any δ > 0 and for any ρi ≥ δ, we have
1/ρi ≤ 1/δ. It is obvious from (22c) that θ̃i(t) → 0 expo-
nentially as t→∞, and, using basic trigonometric identities,
it follows that cos(θi−φi)− cos(θ̄i−φi) and sin(θi−φi)−
sin(θ̄i−φi) converge to zero exponentially as t→∞. Then,
note that for the system ρ̇i = −k1i cos2(θi(t) − φi(t))ρi,
if cos(θi(t) − φi(t)) is PE, then ρi(t) → 0 exponentially
as t → ∞ [10]. Next, it follows from (22b) that |φ̇i(t)| ≤
k1i/2 < µ1i/Ti after a finite time Tf . The condition (19)
implies that 1

Ti

∫ t+Ti

t
| ˙̄θ

i
(τ)|dτ ≥ µ1i/Ti, ∀t ≥ 0, which

means that the average of the reference angular velocity
is larger than µ1i/Ti. Thus, cos(θi(t) − φi(t)) is PE, and
ρi(t)→ 0 exponentially as t→∞.

It is also noted that the switching between control laws
(20)-(21), and (23) is continuous along trajectories, that is,
control law (20)-(21) continuously reduces to (23) as ρi(t)→
0.

Finally, to achieve the simultaneous formation regulation
and tracking control, we define a time-varying signal zi(t)
for each agent as the solution of the following differential
equation

żi = − (|v̄i(t)|+ |ω̄i(t)|) zi, zi(0) = 1, (24)

that is, zi(t) = e−
∫ t
0

(|v̄i(τ)|+|ω̄i(τ)|)dτ , ∀t ≥ 0. We consider
the following control law when ρi > 0,

vi = v̄i − k1iρi cosαi, (25)

ωi = ω̄i − k2iθ̃i − zi (k2iαi + k1i sinc(2αi)(αi − λ2φi)) .
(26)

When ρi = 0, the control law is switched to

vi = v̄i(t), (27)

ωi = ω̄i(t)− k2iθ̃i − zik1i sinc(2θ̃i)θ̃i. (28)

Note that if the reference angular velocity ω̄i(·) is PE, then
zi(t)→ 0 exponentially as t→∞. If the reference velocity
belongs to L1 space, i.e.,

∫∞
0

(|v̄i(τ)|+ |ω̄i(τ)|) dτ is finite,
then zi(t) converges to a certain positive constant as t→∞.

Theorem 1: Consider a group of nonholonomic wheeled
mobile robots satisfying Assumption 1. Then, the formation
regulation and tracking control problem is solved using the
control law (25)-(28), if the control gains are selected such
that 0 < k1i < 2µ1i/Ti and k2i > 0, and if the directed
communication graph G contains a spanning tree.

Proof: In the case of A1 of Assumption 1, that is, the
reference angular velocity is PE, we have zi(t)→ 0 exponen-
tially, and the control law (25)-(28) reduces to (20)-(21) and
(23). It follows from Proposition 3 that |(ρi(t), θ̃i(t))| → 0
exponentially as t → ∞. On the other hand, in the case of
A2 of Assumption 1, that is, the reference velocity belongs
to L1, we have zi(t) converging to some positive constant as
t→∞. Then, the control law (25)-(28) reduces to (12)-(13)
and (16). It follows from Proposition 2 that the error system
is GAS and LES and |(ρi(t), θ̃i(t))| → 0 exponentially as
t → ∞. Finally, if the communication graph contains a
spanning tree, then the information from the leader passes
down to an agent in the network which, in turn, sends its
own information to the neighboring agents and so on, and
thus, the convergence holds for all vehicles in the network,
which implies that the control objective (5) is achieved.

IV. NUMERICAL SIMULATIONS

Consider a group of six nonholonomic mobile robots.
The communication topology and the weighted adjacency
matrix are shown in Fig. 3. The desired geometric pattern
in formation is assumed to be a regular hexagon with
the side length h = 2, i.e., (dx10, d

y
10) = (−1,−

√
3),

(dx21, d
y
21) = (1,−

√
3), (dx32, d

y
32) = (0, 2), (dx43, d

y
43) =

(1,
√

3), and (dx54, d
y
54) = (−1,

√
3). The vehicles are

assumed to be initially stationary at the coordinates q0(0) =
(0, 0, 0), q1(0) = (−5,−5, 0), q2(0) = (−2,−7, 1), q3(0) =
(3,−5, 0), q4(0) = (6,−4, 2), q5(0) = (5, 2, 0).
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Fig. 3. Directed communication topology and the weighted adjacency
matrix used in the simulations.
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Fig. 4. Position paths in the plane and time history of the RMS error of
the formation regulation.

1) Formation Regulation: In the first simulation, the de-
sired configuration for the group leader 0 is at the origin
for all times t ≥ 0. The control parameters are selected as
k1i = k1i = λ2 = 1. The simulation results are shown in Fig.
4, where the root mean square (RMS) error is of the form
RMS([·]i) = ( 1

n

∑n
i=1 [·]2i )1/2. The comparison shows that

the formation errors approach zero after 20 seconds using
the proposed controller and the backstepping controller in
[20], while the uδ-PE controller proposed in [10] converges
after more than 60 seconds.

2) Formation Tracking: In the second simulation, the
desired path for the group leader 0 is a harmonic function,
i.e., qd(0) = (0, 0, 0), vd(t) = 1 and ωd(t) = cos t for
all t ≥ 0. The control parameters are selected as k1i =
k1i = λ2 = 1. The simulation results are shown in Fig.
5. It is observed that all formation tracking errors approach
zero smoothly, while the trajectories with uδ-PE controller
proposed in [10] show the undesired oscillatory behavior in
the transient.

V. CONCLUSION

A distributed simultaneous regulation and tracking con-
troller is proposed for nonholonomic wheeled mobile robot
networks, based on the polar-coordinates model. Under the
assumption of the network topology containing a directed
spanning tree, the origin of the closed-loop system is GAS
and LES in polar coordinates, and correspondingly, exponen-
tially attractive in any compact set. The presented controller
is time-invariant, continuous along trajectories, and does not
require global position measurements of the followers.
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