
Singularity-Free Decentralized Formation Tracking Control for
Heterogeneous Underactuated Surface Vessels*

Bo Wang, Sergey Nersesov, and Hashem Ashrafiuon

Abstract— This paper presents a decentralized leader-
following formation tracking control framework for heteroge-
neous underactuated surface vessels with a directed communi-
cation topology. Our design relies only on the assumption that
either yaw or surge reference velocity is persistently exciting.
First, each vessel in the network is modeled as a generic
planar rigid body with two control inputs using the appropriate
kinematic and force-balance equations. We take advantage of
the cascade structure of the combined kinematic and dynamic
model of surface vessels and develop a reduced-order error
dynamics. Then, a smooth time-varying controller is developed
with the aid of Lyapunov method. The proposed controller
guarantees the uniform global asymptotic stability and strong
robustness properties in the formation-error-coordinates space.
In our approach, formation is achieved without global position
measurements and the vessels may have heterogeneous dynamic
models. Furthermore, the formation tracking problem for
underactuated surface vessels is solved without any singularity
conditions. Simulation results are provided to validate the
proposed control framework.

I. INTRODUCTION

For a group of autonomous vehicles, the formation control
problem roughly consists of driving multiple vehicles to
achieve and stay in a predefined spatial configuration and
move along a reference trajectory. Research on formation
control of surface vessel networks has grown overwhelm-
ingly over the past decade in marine industry since it
has many applications in practice such as reconnaissance,
marine search and rescue missions, and mine clearance, to
name a few. Various approaches to formation control of
autonomous vehicles have been proposed, for instance, using
leader-following strategy [1], behavior-based method [2],
and virtual structure approach [3]. Among these schemes,
leader-following strategy is particularly appreciated in many
applications for its simplicity and scalability [4].

Leader-following formation control of underactuated sur-
face vessels has been addressed by control community
starting, at least, with [1] in which sliding mode formation
controllers have been proposed for surface vessels based
on two specific geometric communication network topology
schemes. In [5], cooperative control laws have been proposed
for underactuated surface vessels to solve the formation
stabilization problem. In [6], position-based control laws
have been proposed to solve the formation tracking problem
for underactuated surface vessels under the assumption that
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the yaw reference velocity of leader is persistently exciting
(PE). In [7], centralized cooperative control laws gave been
presented for underactuated vessels with limited sensing
ranges to perform a desired formation and guarantee no
collisions between the vessels. In [8], using time-varying tan-
type barrier Lyapunov functions, a fault tolerant formation
control scheme was proposed for a class of underactuated
surface vessels with line-of-sight range and angle constraints.
This work was extended in [9] to asymmetric time-varying
constraints on the range and bearing angle between the
follower and the leader in the formation. In [10], based on
sliding mode control and parameter estimation, formation
control laws have been proposed for surface vehicles with
model uncertainties and environmental disturbances. In [11],
the authors presented a finite-time formation controller for
underactuated ships based on terminal sliding mode theory.

However, there are several common drawbacks in the pre-
vious formation designs. Firstly, from a practical viewpoint,
the surface vessels in the network may own different param-
eters or dynamics due to the various sizes and overloads.
Therefore, it is useful if a group of vessels can cooperate with
each other regardless of the parameters or even structures of
their dynamic models. In [1], [5], [6], [9], [11], not only the
dynamics, but also the parameters of all the vessels in the
network are required to be identical, which is a very strict
assumption. Furthermore, using global sensors could be a
quite demanding requirement depending upon environment
and could be biased easily due to measurement errors. Thus,
to improve the cooperative ability, traffic safety and com-
munication efficiency, it is required to have vessel-to-vessel
interactions, and to control the inter-vessel configurations
with onboard vehicle sensors. Moreover, for tracking control
of underactuated surface vessels, it is common to require that
the desired trajectory satisfies certain singularity conditions
such as PE of yaw velocity [6], or yaw velocity separating
from zero [12], [13], [14]. In this case, the singularity condi-
tions impose strict requirements on the reference trajectories
so that the vessel cannot even track a straight line. For
formation control of nonholonomic mobile robots, various
control schemes have been proposed, for example, to solve
the problems of heterogeneity [15], the singularity conditions
[16], and decentralized design [17]. However, due to the
underactuation and the specific dynamics of surface vessels,
it is difficult to extend these control designs to underactuated
vessels.

The main contribution and novelty of this paper is to
present a singularity-free decentralized leader-following for-
mation control framework for heterogeneous underactuated
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surface vessels with a directed communication topology.
Our design relies upon the assumption that either the yaw
or the surge reference velocity is persistently exciting; i.e.
the only requirement is for the vessel to be moving. First,
each vessel in the network is modeled as a generic planar
rigid body with two control inputs using the appropriate
kinematic and force-balance equations. We take advantage
of the cascade structure of the combined kinematic and
dynamic model of surface vessels and develop a reduced-
order error dynamics. Then, an smooth time-varying con-
troller is developed with the aid of Lyapunov method. The
proposed controller guarantees the uniform global asymptotic
stability and strong robustness properties in the formation-
error-coordinates space, and can be implemented in directed
time-invariant communication networks with a spanning tree.
Compared with existing methods, the formation is achieved
without global position measurements and the vessels in the
network are allowed to have different dynamics. Further-
more, our approach solves the formation tracking problem
for underactuated surface vessels without introducing any
singularity conditions.

The rest of the paper is organized as follows. Section
II presents the preliminaries and problem formulation. The
transformation to reduce the order of error dynamics and
the formation control design are proposed in Section III.
Simulation examples are shown in Section IV to verify
the theoretical results. Finally, the concluding remarks are
presented in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Model Description

Consider a group of N + 1 heterogeneous underactuated
surface vessels where the vessels are indexed i = 0,1, . . . ,N
with 0 representing the leader vessel and 1, . . . ,N repre-
senting the followers. The configuration of each vessel can
be described by a vector of generalized coordinates qi =
[xi,yi,θi]

>, where (xi,yi) is the position of the vessel i in the
global coordinate system {XY}, and θi is the heading angle,
as shown in Fig. 1. We assume that each vessel has only two
actuators, which provide the surge control force and the yaw
control moment. Under this assumption, the motion of the
surface vessel i is described by the following equations [14]

ẋi = vxi cosθi− vyi sinθi,

ẏi = vxi sinθi + vyi cosθi,

θ̇i = ωi,

(1a)


v̇xi = fxi(vxi,vyi,ωi)+δxi(vxi,vyi,ωi, t)+ τ1i,

v̇yi = fyi(vxi,vyi,ωi)+δyi(vxi,vyi,ωi, t),

ω̇i = fωi(vxi,vyi,ωi)+δωi(vxi,vyi,ωi, t)+ τ2i,

(1b)

where (vxi,vyi) represents the velocity of the center of mass
of vehicle i in the body-fixed frame {xbiybi} and ωi is
its angular velocity. The velocity vector is denote by vi =
[vxi,vyi,ωi]

>. fxi(·), fyi(·), fωi(·) are known locally Lipschitz
continuous functions which usually consist of Coriolis and
centrifugal and hydrodynamic damping terms. The terms

Leader 

Follower 

Fig. 1. Top view of the leader-follower formation of underactuated surface
vessels i and j.

δxi(·),δyi(·),δωi(·) represent the unknown but bounded mod-
eling uncertainties and disturbances, i.e.,

|δxi(·)|∞ ≤ ∆xi, |δyi(·)|∞ ≤ ∆yi, |δωi(·)|∞ ≤ ∆ωi,

where ∆xi,∆yi,∆ωi are known positive constants. τ1i and τ2i
are the scaled control inputs representing the surge force and
yaw moment, respectively, as shown in Fig. 1.

From the planar kinetics of rigid bodies, the term fyi(·) in
the sway force-balance equation in (1b) consists of quadratic
Coriolis and centrifugal force terms f Cyi(·) and damping terms
f Dyi(·), that is fyi = f Cyi+ f Dyi. From rigid bodies mechanics, the
Coriolis force has the form −2mi~ωi×~vi, and the centrifugal
force has the form −mi~ωi× (~ωi×~ri), which implies that the
components of Coriolis and centrifugal forces in ybi direction
are only functions of vxi and ωi, that is f Cyi = f Cyi(vxi,ωi),
and the directions of the forces are opposite to the ybi
direction. Furthermore, the component of the hydrodynamic
damping force in the direction ybi is only related to vyi, that
is f Dyi = f Dyi(vyi), and its direction is opposite to the direction
of vyi. Based on the above discussion, we make the following
assumption.

Assumption 1: The term fyi(·) in the sway force-balance
equation in (1b) are given by

fyi(vxi,vyi,ωi) = f Cyi(vxi,ωi)+ f Dyi(vyi) (2)

with the Coriolis and centrifugal terms f Cyi(vxi,ωi) satisfying

∂ f Cyi

∂vxi
(vxi(t),ωi(t)) =−ηiωi(t), ∀ t ≥ 0, (3)

where ηi > 0 is a constant related to the inertia parameters,
and the hydrodynamic damping term f Dyi(vyi) satisfying

∂ f Dyi

∂vyi
(vyi(t))≤ 0, ∀ t ≥ 0. (4)

Remark 1: The Assumption 1 is realistic from the physics
of the problem. Actually, the generic vessel model (1a), (1b)

3288



with Assumption 1 covers most vessel models in practical
applications such as models presented in the works [12], [18],
[19]. Furthermore, as pointed in [20], since the hydrody-
namic damping forces in the vyi-equation are dominant in
the sway direction, the sway velocity of the surface vessel is
passive bounded, and thus it is uniformly ultimately bounded
[20]. Moreover, clearly, the model (1a), (1b) is underactuated
since there is no sway control force in the vyi-equation in
(1b).

B. Preliminaries of Graph Theory

For formation control of surface vessels, we use graph
theory to define the communication network among the
vessels. Network topology of the N + 1 surface vessels is
defined by a directed graph G = (V ,E ) where V and E ⊆
V ×V represent its sets of vertices and edges, respectively.
There are N +1 nodes whose node dynamics are described
in (1a), (1b). The set of neighboring nodes with edges
connected to node i is denoted by Ωi = {j | (i, j) ∈ E }.
The edges represent communication between the nodes such
that (follower) node i can obtain information from (leader)
node j for feedback control purposes, if j ∈Ωi, as shown in
Fig. 1. In order to incorporate a combination of neighboring
feedback information from neighboring nodes, we let wij ≥
0 be a constant weighing factor for any i, j ∈ V . These
factors are selected such that ∑j∈Ωi wij = 1 if (i, j) ∈ E and
wij = 0, otherwise. We assume that there exists at least one
directed path starting from the leader 0 to any other node
in the network, which implies that the graph G is weakly
connected. Furthermore, we assume that the communication
topology is time invariant, there are no self-loops in the
graph, and the leader does not receive any communication
from other nodes.

C. Problem Formulation

Consider N +1 heterogeneous underactuated surface ves-
sels with a communication network described by a directed
graph G . The objective of leader-follower formation control
is to design a decentralized controller such that the follower
agents move together according to the leader’s motion and
asymptotically converge to a desired geometric pattern. The
desired position geometric pattern of the network of vessels
may be defined by a set of constant position offset vectors
{(d1

ij,d
2
ij)∈R2 : i, j∈V , i 6= j}. More precisely, the following

formation control problem is addressed in this paper.
Formation control problem. Without global position mea-

surements of follower agents, design control laws τ1i,τ2i for
the i-th follower such that: (i) all the signals in the closed-
loop system are uniformly bounded; (ii) all the vessels in the
network can maintain a prescribed formation position in the
sense that

lim
t→∞

∣∣∣∣[xi(t)− xj(t)−d1
ij

yi(t)− yj(t)−d2
ij

]∣∣∣∣= 0, ∀ i, j ∈ V . (5)

It follows from Lemma 3.3 in [17] that the formation
objective (5) holds if and only if the following equation

holds:

lim
t→∞

∣∣∣∣∣
[

xi(t)
yi(t)

]
− ∑

j∈Ωi

wij

[
xj(t)+d1

ij
yj(t)+d2

ij

]∣∣∣∣∣= 0, ∀ i = 1, . . . ,N. (6)

Remark 2: In marine practice of the formation control of
surface vehicles, the position offset vector may be smooth
time-varying vectors (d1

ij(t),d
2
ij(t)) instead of constant vec-

tors and in this case the formation is time-varying. Although
in this paper we focus on time invariant formation, all the
results in this paper can be easily generalized to the case
of time-varying formations. This, however, is omitted in our
discussion to simplify the notation and derivations.

We make the following assumption on the leader vessel 0.
Assumption 2: The state variable of the leader vessel

(q0,v0) and its first derivative are bounded for all t ≥ 0. In
addition, either the surge velocity or the yaw velocity of the
leader is PE, that is, there exist T,µ > 0 such that∫ t+T

t
(|vx0(s)|+ |ω0(s)|)ds≥ µ, ∀t ≥ 0. (7)

D. Feasible Reference Trajectories Generation

Due to the underactuation nature of surface vehicles, the
reference configuration trajectory dictated by the forma-
tion cannot be assigned arbitrarily to vessel i . In other
words, given the relative position measurements {(xi(t)−
xj(t),yi(t)−yj(t)) : j∈Ωi} and the desired formation position
offset vectors {(d1

ij,d
2
ij) : j ∈ Ωi} for vessel i, the feasible

orientation trajectory must be determined based on the vessel
model. More precisely, let us denote the position reference
trajectory for the vessel i by

x̄i(t) := ∑
j∈Ωi

wij
(
xj(t)+d1

ij
)
,

ȳi(t) := ∑
j∈Ωi

wij
(
yj(t)+d2

ij
)
.

(8)

Then, the feasible orientation trajectory defined by

θ̄i(t) := ∑
j∈Ωi

wij

(
θj(t)+d3

ij

)
(9)

is forced to obey the same second-order nonholonomic
constraint as the vessel i, where d3

ij denotes the desired ori-
entation offset. Then, the reference configuration trajectory
q̄i(t) := [x̄i(t), ȳi(t), θ̄i(t)]> can be seen as one generated by a
virtual system subjected to the same constraints as the vessel
i: 

˙̄xi(t) = v̄xi(t)cos θ̄i(t)− v̄yi(t)sin θ̄i(t),
˙̄yi(t) = v̄xi(t)sin θ̄i(t)+ v̄yi(t)cos θ̄i(t),
˙̄
θi(t) = ω̄i(t),

(11a)


˙̄vxi(t) = fxi

(
v̄xi(t), v̄yi(t), ω̄i(t)

)
+ τ̄1i(t),

˙̄vyi(t) = fyi
(
v̄xi(t), v̄yi(t), ω̄i(t)

)
,

˙̄ωi(t) = fωi
(
v̄xi(t), v̄yi(t), ω̄i(t)

)
+ τ̄2i(t),

(11b)

where v̄i(t) := [v̄xi(t), v̄yi(t), ω̄i(t)]> is the reference velocity
vector assigned by all vessels j∈Ωi, and τ̄1i(t), τ̄2i(t) are the
corresponding desired virtual control inputs. As proposed in
[14], the feasible orientation trajectory θ̄i(t) is a solution
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to the following first order ordinary differential equation
(ODE):

˙̄vyi(t) = fyi

(
v̄xi(t), v̄yi(t), ˙̄

θi(t)
)
, (12)

subject to the initial condition θ̄i(0) = θ̄i,0, where v̄xi(t) and
v̄yi(t) are given by

v̄xi(t) = cos θ̄i(t) ˙̄xi(t)+ sin θ̄i(t) ˙̄yi(t),

v̄yi(t) =−sin θ̄i(t) ˙̄xi(t)+ cos θ̄i(t) ˙̄yi(t),
(13)

and x̄i(t), ȳi(t) are given by (8). Therefore, the feasible
orientation trajectory θ̄i(t) is calculated by numerically
integrating(12) given the reference position offset vectors
{(d1

ij,d
2
ij) : j ∈Ωi}. Finally, the feasible orientation offset d3

ij
is selected as d3

ij = θ̄i(t)−θj(t).

III. CONTROL DESIGN AND MAIN RESULTS

A. Error Dynamics

The objective of formation control of surface vessels is to
achieve |qi(t)− q̄i(t)| → 0 and |vi(t)− v̄i(t)| → 0 as t → ∞.
For this problem, we usually calculate the dynamics of the
formation error (q̃i, ṽi) := (qi − q̄i,vi − v̄i) and convert the
formation control problem into one of stabilization of the
error system. However, due to the underactuation, the error
dynamics often becomes complicated and hard to stabilize.
To achieve the formation objective (6), note that the vessel
model (1a), (1b) has a cascade structure of the kinematics and
kinetics. Therefore, we define the formation error vector zi =
[z1i,z2i,z3i]

> for agents i using the following transformation:

zi = J (θi) [(q̇i− ˙̄qi)+Λ(qi− q̄i)] , (14)

where J(θi) is the orthogonal rotation matrix

J(θi) :=

 cosθi sinθi 0
−sinθi cosθi 0

0 0 1

 , (15)

and Λ = diag{λ1,λ2,λ3} is a diagonal and positive definite
matrix. We have the following results.

Lemma 1: Consider the formation error zi defined in (14),
where Λ = diag{λ1,λ2,λ3} is a positive definite matrix. For
any agent i = 1, . . . ,N, if the error zi(t) is bounded for all t ≥
0, and zi→ 0 as t→∞, then the formation tracking problem
defined by (5) is solved.

Proof: Since J(θi) is orthogonal matrix, zi ∈ L∞

implies [(q̇i− ˙̄qi)+Λ(qi− q̄i)] ∈ L∞, and zi → 0 implies
[(q̇i− ˙̄qi)+Λ(qi− q̄i)]→ 0, which may be written as

d
dt
(qi− q̄i) =−Λ(qi− q̄i)+oi(t), lim

t→∞
oi(t) = 0, (16)

where oi(t) = J(θi)
>zi(t). Then from the converging-input

convergent-state (CICS) property of stable linear systems
[21], we conclude that (qi− q̄i) is bounded and (qi− q̄i)→ 0
as t → ∞. Since this convergence holds for all i = 1, . . . ,N,
we can conclude that (6) and consequently (5) hold.

Referring to Lemma 1, the objective of formation control
design is to drive zi, i = 1, . . . ,N to zero asymptotically. The

error dynamics in terms of zi is determined by taking the
time derivative of (14):

żi = J̇ [(q̇i− ˙̄qi)+Λ(qi− q̄i)]+ J [(q̈i− ¨̄qi)+Λ(q̇i− ˙̄qi)]

=

 ωiz2i
−ωiz1i

0

+ J (θi) q̈i− J (θi) ¨̄qi +Λvi−ΛJ (θi) ˙̄qi

=

 ωiz2i
−ωiz1i

0

+
v̇xi−ωivyi− c(i−ī)

(
˙̄vxi− ω̄iv̄yi

)
v̇yi +ωivxi + s(i−ī)

(
˙̄vxi− ω̄iv̄yi

)
ω̇i− ˙̄ωi

−s(i−ī)
(

˙̄vyi + ω̄iv̄xi
)
+λ1(vxi− c(i−ī)v̄xi− s(i−ī)v̄yi)

−c(i−ī)
(

˙̄vyi + ω̄iv̄xi
)
+λ2(vyi + s(i−ī)v̄xi− c(i−ī)v̄yi)

+λ3(ωi− ω̄i)

 ,
(17)

where c(i−ī) := cos(θi− θ̄i), and s(i−ī) := sin(θi− θ̄i). Sub-
stituting (1a), (1b), (11a) and (11b) into (17), and using the
feedback transformations

τ1i = u1i +ωivyi + c(i−ī)
(

˙̄vxi− ω̄iv̄yi
)
+ s(i−ī)

(
˙̄vyi + ω̄iv̄xi

)
−λ1[vxi− c(i−ī)v̄xi− s(i−ī)v̄yi]− fxi(vxi,vyi,ωi), (18)

τ2i = u2i + ˙̄ωi−λ3 (ωi− ω̄i)− fωi(vxi,vyi,ωi), (19)

we derive the error dynamics in a reduced form

żi =

 ωiz2i
−ωiz1i

0

+
u1i

Ψi
u2i

+
δxi

δyi
δωi

 , (20)

where Ψi is given as

Ψi = ωivxi + s(i−ī)
(

˙̄vxi− ω̄iv̄yi
)
− c(i−ī)

(
˙̄vyi + ω̄iv̄xi

)
+λ2[vyi + s(i−ī)v̄xi− c(i−ī)v̄yi]+ fyi(vxi,vyi,ωi). (21)

Therefore, from the discussion above, the formation control
problem is converted to design new control inputs (u1i,u2i)
that result in uniformly asymptotically stable error dynamics
(20) for all follower vessels i = 1, . . . ,N.

B. Control Design

In this paper, we propose the following nonlinear time-
varying controller:

u1i =−k1iz1i, (22)

u2i =−k3iz3i− k2i
Ψi
z3i

z2i, (23)

where k1i, k2i and k3i are positive control gains, Ψi is given
by (21). We have the following result.

Lemma 2: If z3i→ 0 exponentially at a rate γ > 0 as t→∞

and the control gain λ1 ≥ γ , then Ψi/z3i is bounded.
Proof: It is noted that z3i

γ−→ 0 implies that ωi− ω̄i
γ−→ 0

and θi− θ̄i
γ−→ 0. Thus, we have sin(θi− θ̄i)

γ−→ 0 and cos(θi−
θ̄i)

γ2/2−−→ 1. From (21), we have

Ψi = ωivxi−
(

˙̄vyi + ω̄iv̄xi
)
+λ2(vyi− v̄yi)+ fyi(vxi,vyi,ωi)

=
(
v̇yi− ˙̄vyi

)
+ ω̄i (vxi− v̄xi)+λ2

(
vyi− v̄yi

)
+o1(t),

3290



where o1(t)
γ−→ 0. Then, it follows from the feedback trans-

formation (18) and the vessel model (1b) that

v̇xi− ˙̄vxi =−λ1 (vxi− v̄xi)+ ω̄i
(
vyi− v̄yi

)
+o2(t),

v̇yi− ˙̄vyi =
[

f Cyi(vxi,ωi)− f Cyi(v̄xi, ω̄i)
]
+
[

f Dyi(vyi)− f Dyi(v̄yi)
]

where o2(t)
γ−→ 0. Thus, from Assumption 1, we have[

ξ̇1

ξ̇2

]
=

[
−λ1 ω̄i(t)
−ηiω̄i(t) A22(t)

][
ξ1
ξ2

]
+o(t), (24)

where ξ1 = vxi− v̄xi, ξ2 = vyi− v̄yi, A22(t) = ∂ fyi/∂vyi ≤ 0,
and o(t)

γ−→ 0. It follows [22] that (ξ1,ξ2)
γ−→ 0, and therefore

Ψi
γ−→ 0. Since Ψi → 0 has the same order as z3i → 0, we

conclude that term Ψi/z3i is bounded. �
Based on the above analysis, the control laws (22) and (23)

are smooth and bounded if the formation error zi is bounded.
Then, under the controller (22) and (23), the error dynamics
(20) are transformed intoż1i

ż3i
ż2i

=

−k1i 0 ωi
0 −k3i −k2iΨi/z3i
−ωi Ψi/z3i 0

z1i
z3i
z2i

+
δxi

δωi
δyi

 .
(25)

Our main result is the following.
Theorem 1: Consider a group of heterogeneous planar

underactuated vehicles with the communication topology
graph G , the node dynamics given by equations (1a), (1b),
and the error dynamics given by (20).
(i.) If the disturbance terms δxi,δyi,δωi are vanishing with

respect to zi, then under the control laws (18), (19), (22)
and (23) with positive control gains λ1,λ2,λ3 k1i,k2i and
k3i, where k1i ≥ k3i/k2i, the origin of the error dynamics
(25) is uniformly globally asymptotically stable.

(ii.) Furthermore, if all disturbance terms δxi,δyi, and δωi are
bounded such that |δxi|∞≤∆xi, |δyi|∞≤∆yi, |δωi|∞≤∆ωi,
then the solutions of the error dynamics (25) is globally
uniformly ultimately bounded.
Proof: (i.) Consider the Lyapunov function candidate

for the error dynamics (25) as V (zi) =
1
2

(
z2

1i + z2
2i +

1
k2i

z2
3i

)
.

It follows that, along the trajectories of (25), we have

V̇ (zi(t)) =−k1iz2
1i− k3iz2

3i/k2i ≤ 0, (26)

which implies that the closed-loop system is globally uni-
formly stable, and thus the formation error zi is bounded
over the time interval [0,+∞). Furthermore, from LaSalle-
Yoshizawa Theorem, and by integrating both sides of (26),
we can conclude that both z1i and z3i converge to zero
exponentially with convergence rates k1i and k3i/k2i, respec-
tively. Then, from Lemma 2, all terms in (25) are bounded.
Moreover, from the convergence of ωi − ω̄i → 0, and the
PE assumption of reference trajectory (7), either ωi(t) or
−k2iΨi/z3i is PE, then the origin of (25) is uniformly
globally asymptotically stable [22].

(ii.) In the case of bounded disturbances, it follows from
the converse Lyapunov theorem and the boundedness of
disturbance terms that the solutions of the error dynamics
(25) are globally uniformly ultimately bounded. �

IV. SIMULATION RESULTS

Consider a heterogeneous surface vessel network. We
assume that Ω1 = {0} and Ω2 = {0,1} and set the weighting
coefficients

w10 = 1,w20 = 0.8,w21 = 0.2.

We assume that the agents 0 and 1 are identical vessels,
which are modeled with diagonal mass matrix and linear
hydrodynamic damping [12], that is

fxi =
m22,i

m11,i
vyiωi−

d11,i

m11,i
vxi,

fyi =−
m11,i

m22,i
vxiωi−

d22,i

m22,i
vyi,

fωi =
m11,i−m22,i

m33,i
vxivyi−

d33,i

m33,i
ωi,

and the parameters in SI unites are given as

m11,i = 1.412, m22,i = 1.982, m33,i = 0.354
d11,i = 3.436, d22,i = 12.99, d33,i = 0.864.

Vessel 2 is modeled with diagonal mass matrix but nonlinear
hydrodynamic damping [14], that is

fxi =
m22,i

m11,i
vyiωi−

d11,i

m11,i
|vxi|α11,i sign(vxi) ,

fyi =−
m11,i

m22,i
vxiωi−

d22,i

m22,i

∣∣vyi
∣∣α22,i sign

(
vyi
)
,

fωi =
m11,i−m22,i

m33,i
vxivyi−

d33,i

m33,i
|ωi|α33,i sign(ωi) ,

where the parameters in SI unites are given as

m11,2 = 1.317, m22,2 = 3.832, m33,2 = 0.926
d11,2 = 5.252, d22,2 = 14.138, d33,2 = 2.262
α11,2 = 1.510, α22,2 = 1.747, α33,2 = 1.592.

In this simulation, the leader vessel is commanded to follow
a U-shape trajectory, and the geometric shape of the desired
formation for the three vehicles is a triangle configuration,
i.e.,

[
d1

10,d
2
10
]
= [−1 m,−1 m] and

[
d1

20,d
2
20
]
= [1 m,−1 m],

as shown in Fig. 2. All vehicles start from rest. The initial
poses for the three vehicles in SI units are given as follows:

q0
0 = [0,0,π/2]>, q0

1 = [−1.5,−1,0]>, q0
2 = [−2,−2,0]>.

The control gains were selected as

λ1 = λ2 = λ3 = 2,
k1i = 3, k2i = k3i = 1, i = 1,2.

The simulation results are shown in Figs. 2 and 3. Figure 2
shows the paths of the three vessels in the formation where
the desired triangular geometry is achieved after approxi-
mately 60 seconds. The configuration error trajectories of the
two follower vessels are shown in Fig. 3. The convergence
of the configuration formation error trajectories implies that
the error dynamics is stabilized in approximately 60s.
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Fig. 2. Illustration of the paths of the three surface vessels in formation.
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Fig. 3. Trajectories of the configuration errors of the surface vessels in the
network.

V. CONCLUSION

In this work, we present a new singularity-free decentral-
ized formation tracking control framework for heterogeneous
underactuated surface vessels. The approach is based on
leader-follower model relying on relative coordination and
thus without requiring any global position measurements.
Using the cascade structure of vehicle dynamic model, a
transformation is proposed to reduce the order of error
dynamics, and then the smooth time-varying controller is de-
veloped with the aid of Lyapunov method and only relies on
the assumption that either the surge or yaw reference velocity
is persistently exciting. The proposed controller guarantees
uniform global asymptotic stability and strong robustness
properties in the formation-error-coordinates space, and can
be implemented in directed time-invariant communication
networks with a spanning tree. Our future research will
concentrate on formation control of surface vessels and other

types of vehicles, such as mobile robots and aircraft.
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