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Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without reference measurements

Traditional Control Methods

(often assume the reference attitude is known)

Satellite
* Proportional-Integral (Pl)
*« LQG

¢ H-infinity

Antenna

[Reference attitude usually is unknown! ]




Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without reference measurements
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Euler-Lagrange eqn:

0=J(0)w
Io+C(w)w+Dw=J(0)'T




Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without angular measurements

Extremum Seeking Control (ESC)
(no need to know the reference)

+ Real-time optimization \\\ 3'9n3|

* Model-free Source

+ Applied to dynamical systems (unknown)
w,=—sind;, w,=0, w.=0cos6;. Antenna

L, — (I, — I.)w,w, = — B,sin6,
Lo, —(I.— 1) w.w, =6,
Low.—(I,—I)w,w,= ,cos6,

Euler-Lagrange eqn:

0=J(0)w
Io+C(w)w+Dw=J(0) T




Extremum seeking control (ESC)

‘ Method: Symmetric product approximation

[Classical averaging-based ESC]

[Lie bracket-based ESC]

& = av/wcos(wt) + f(z)v/wsin(wt)
1 «

z =l f(@)](E) = 5V/(@)
[Symmetric product approximation-based ESC] applies to mechanical systems
G = Ro(q) + R(q)q + uu(t)F(t, q)

i = Ro(@) + R@i— {(F: F)(t.9)




Signal assumptions

Measurement: receiving power p(f). Want to max p(0)

Optimization problem: min (0) := —p(6) + po

[Measurements 1 (6(t)) > 0]:
(A1) 31 6, := [f1x 02.]" s.t.

oh oh
S0 =0, and Z5(0) £0, VO #£0..

(A2) his in the separable form
h(9) = h1(01) =+ hg(ez)
(A3) 3 has > 0 such that

5%h

[Rmk 1] Both the extremum 6. and the gradient 2—2(9) are unknown.



Control law

[System dynamics]: Euler-Lagrangian equation

6 =J)w
I+ C(w)w 4+ Dw = J(@) T+

[Control law]: high-frequency high-amplitude

= %ul (é)h(@)

Ty = @/MQ (E)h(ﬁ)

g

T T ifi= .7
Orthogonality cond: / Us(T)U;(r)dr =3 2 I Z ]
0 0 ifi#j

[Closed-loop system]
0 = J(O)w

I+ Clw)w~+ Dw = J(O) " [Ku (f)}



Averaging analysis

[Closed-loop system]

6 = J(O)w

16+ C(w)w + Dw = J(0)7 [h(g) Ku (t)}

[Averged system]: symmetric product system

0 = J(O)w
A —\ — — AT " :I.(‘ahT o o
Io+ C(@)w+ Dw = J(0) A(61) 590 (0)h(0)
where o
0,) :— kl[y_ 0 1.2 —-1.2
A@) { 0 k‘%r(@l)} r0) =L + L

Theorem (Symmetric product approximation)

If [Averaged system] is uniformly asymptotically stable, then [Closed-loop system]
is practically uniformly asymptotically stable.



Stability analysis: Overview

[Averged system]: symmetric product system

0 = JO)w
- - _ T A A 1on" - -
Io+ C(@)w+ Do = J(0) A(6r) 350 (6)h(0)
where _—
LIt 0 1.2 12
A@) -—{ 0 k%r(ﬂl)}’ r0) =1L 4 e,

[Rmk 2]: If A(:) is a constant matrix, then [Averged system] is reminiscent of a
gradient system (i.e., a Lagrangian system under PD control)

e.g., mass-spring-damper: & = —kqi — kp(x — z4)

[Train of thought]:

»“Frozen dynamics"

» strict Lyapunov function

» robustness analysis (slowly time-varying system)



Stability analysis: Frozen dynamics

[“Frozen dynamics"]:

-
Il

J(0)©
— T — —
6+ C@)o+ Do = J@)TA {;gg (Q)h(ﬁ)}
[Weak Lyapunov function]
1= —9 12, .9

Vi(0 —0.,2) := %’TIQ + 1}‘(9)2 - 1 M0.)

[Rmk 3]: Asymptotic stability of [“Frozen dynamics"] comes from by verifying the
LaSalle’s condition on the set {V; = 0}



Stability analysis: Strict Lyapunov function

Theorem (Strict Lyapunov function)

VA0 — 0.,@) := Vo(0,@) + P3(Vi(0 — 6.,®))

is a strict Lyapunov function for the [“Frozen dynamics"].

Vil 0.,@) = 50" 1B+ Th(B) ~ 2h(6.)°,
Va(0, @) == g—g(é)J(é)Iw,
Py {2080 0 1900
Py(l) == V6d + 8@%,
Pyo(l) := 6harlng + Lpl(l)"’

h(0.)

1
Pi(l) := d—/ Py (m)dm + Pol,
m Jo
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Stability analysis: Robustness

Proposition (UAS of averaged system)

Consider the equilibrium point (0,®) = (#«,0). Assume that k; > 0. Then, there
exists a positive constant k2 > 0 such that for all k2 € (0, k2], the equilibrium
point (6, @) = (Ax,0) is uniformly asymptotically stable.

[Proof]: Rewrite the averaged system as a slowly time-varying system

0 = J(O)w
- . - ST 10T -
Iw+ C(w)w+ Do = J(0) At) 5% (0)h(6)
Lyapunov analysis:
IV ¢
V>\|3Vg — V>\|frozen + a>\2 )\ (t)

The second term can be made arbitrarily small by choosing a sufficiently small
control parameter k.
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Illustrative examples

Main result: Practically uniformly asymptotically stable
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To prove further:

[4 B. Wang, S. Nersesov, H. Ashrafiuon, P. Naseradinmousavi, and
M. Krstic, “Underactuated Source Seeking by Surge Force
Tuning: Theory and Boat Experiments,” |IEEE Transactions on
Control Systems Technology, Volume 31, Issue 4, July 2023, pp.
1649-1662.

[4 B. Wang, “Semi-Global Nonholonomic Source Seeking by Torque
Tuning," arXiv, October 2025. (In preparation)
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Thank youl!

bwangl1®@ccny.cuny.edu

https://bwang-ccny.github.io/
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