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Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without reference measurements

Satellite

Antenna

Traditional Control Methods
(often assume the reference attitude is known)

• Proportional-Integral (PI) 
• LQG
• H-infinity
• …

Reference attitude usually is unknown!
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Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without reference measurements

Signal 
Source

(unknown)

Antenna

Euler-Lagrange eqn:
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Antenna pointing system

Problem: make antenna to autonomously adjust its direction to maximize
the received signal strength without angular measurements

Signal 
Source

(unknown)

Extremum Seeking Control (ESC)
(no need to know the reference)

• Real-time optimization
• Model-free
• Applied to dynamical systems
• …

Antenna

Euler-Lagrange eqn:
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Extremum seeking control (ESC)

Method: Symmetric product approximation

[Classical averaging-based ESC]

[Lie bracket-based ESC]

ẋ = α
√

ω cos(ωt) + f(x)
√

ω sin(ωt)

˙̄x = 1
2 [α, f(x̄)](x̄) = α

2 ∇f(x̄)

[Symmetric product approximation-based ESC] applies to mechanical systems

q̈ = R0(q) + R(q)q̇ + uω(t)F (t, q)

¨̄q = R0(q̄) + R(q̄) ˙̄q − 1
4 ⟨F : F ⟩(t, q̄)
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Signal assumptions

Measurement: receiving power p(θ). Want to max p(θ)

Optimization problem: min h(θ) := −p(θ) + p0

[Measurements h(θ(t)) > 0]:
(A1) ∃ ! θ∗ := [θ1∗ θ2∗]⊤ s.t.

∂h

∂θ
(θ∗) = 0, and ∂h

∂θ
(θ) ̸= 0, ∀θ ̸= θ∗.

(A2) h is in the separable form

h(θ) = h1(θ1) + h2(θ2).

(A3) ∃ hM > 0 such that ∥∥∥∥∂2h

∂θ2 (θ)
∥∥∥∥ ≤ hM , ∀θ.

[Rmk 1] Both the extremum θ∗ and the gradient ∂h

∂θ
(θ) are unknown.
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Control law
[System dynamics]: Euler-Lagrangian equation

θ̇ = J(θ)ω
Iω̇ + C(ω)ω + Dω = J(θ)⊤τ

[Control law]: high-frequency high-amplitude

τ1 = k1

ε
u1

(
t

ε

)
h(θ)

τ2 = k2

ε
u2

(
t

ε

)
h(θ)

Orthogonality cond:
∫ T

0
Ui(τ)Uj(τ)dτ =

{
T
2 if i = j,

0 if i ̸= j

[Closed-loop system]

θ̇ = J(θ)ω

Iω̇ + C(ω)ω + Dω = J(θ)⊤
[

h(θ)
ε

Ku
(

t

ε

)]
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Averaging analysis

[Closed-loop system]

θ̇ = J(θ)ω

Iω̇ + C(ω)ω + Dω = J(θ)⊤
[

h(θ)
ε

Ku
(

t

ε

)]
[Averged system]: symmetric product system

˙̄θ = J(θ̄)ω̄

I ˙̄ω + C(ω̄)ω̄ + Dω̄ = J(θ̄)⊤Λ(θ̄1)
[

−1
2

∂h

∂θ

⊤
(θ̄)h(θ̄)

]
where

Λ(θ̄1) :=
[

k2
1I−1

y 0
0 k2

2r(θ̄1)

]
, r(θ1) := I−1

x s2
θ1 + I−1

z c2
θ1

Theorem (Symmetric product approximation)
If [Averaged system] is uniformly asymptotically stable, then [Closed-loop system]
is practically uniformly asymptotically stable.
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Stability analysis: Overview

[Averged system]: symmetric product system

˙̄θ = J(θ̄)ω̄

I ˙̄ω + C(ω̄)ω̄ + Dω̄ = J(θ̄)⊤Λ(θ̄1)
[

−1
2

∂h

∂θ

⊤
(θ̄)h(θ̄)

]
where

Λ(θ̄1) :=
[

k2
1I−1

y 0
0 k2

2r(θ̄1)

]
, r(θ1) := I−1

x s2
θ1 + I−1

z c2
θ1

[Rmk 2]: If Λ(·) is a constant matrix, then [Averged system] is reminiscent of a
gradient system (i.e., a Lagrangian system under PD control)

e.g., mass-spring-damper: ẍ = −kdẋ − kp(x − xd)

[Train of thought]:
»“Frozen dynamics"
» strict Lyapunov function
» robustness analysis (slowly time-varying system)
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Stability analysis: Frozen dynamics

[“Frozen dynamics"]:

˙̄θ = J(θ̄)ω̄

I ˙̄ω + C(ω̄)ω̄ + Dω̄ = J(θ̄)⊤Λ̄
[

−1
2

∂h

∂θ

⊤
(θ̄)h(θ̄)

]
[Weak Lyapunov function]

V1(θ̄ − θ∗, ω̄) := 1
2 ω̄⊤Iω̄ + 1

4 h̄(θ̄)2 − 1
4 h̄(θ∗)2 > 0

V̇1 = ω̄⊤
[

−C(ω̄)ω̄ − Dω̄ + J(θ̄)⊤Λ̄
(

−1
2

∂h

∂θ

⊤
(θ̄)h(θ̄)

)]
+ 1

2 h̄(θ̄)∂h̄

∂θ
(θ̄)J(θ̄)ω̄

= − ω̄⊤Dω̄ ≤ 0

[Rmk 3]: Asymptotic stability of [“Frozen dynamics"] comes from by verifying the
LaSalle’s condition on the set {V̇1 = 0}
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Stability analysis: Strict Lyapunov function

Theorem (Strict Lyapunov function)

Vλ(θ̄ − θ∗, ω̄) := V2(θ̄, ω̄) + P3(V1(θ̄ − θ∗, ω̄))
is a strict Lyapunov function for the [“Frozen dynamics"].

V1(θ̄ − θ∗, ω̄) := 1
2 ω̄⊤Iω̄ + 1

4 h̄(θ̄)2 − 1
4 h̄(θ∗)2.

V2(θ̄, ω̄) := ∂h̄

∂θ
(θ̄)J(θ̄)Iω̄,

P0 := max
{

12I2
M

Im
,

4h̄2
M

h̄(θ∗)
λ−1

min

[
∂2h̄

∂θ2 (θ∗)
]}

.

P1(l) :=
√

6dM + 8
√

3l
IM√
Im

,

P2(l) := 6h̄M IM + 1
h(θ∗)P1(l)2

P3(l) := 1
dm

∫ l

0
P2(m)dm + P0l,
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Stability analysis: Robustness

Proposition (UAS of averaged system)

Consider the equilibrium point (θ̄, ω̄) = (θ∗, 0). Assume that k1 > 0. Then, there
exists a positive constant k̄2 > 0 such that for all k2 ∈ (0, k̄2], the equilibrium
point (θ̄, ω̄) = (θ∗, 0) is uniformly asymptotically stable.

[Proof]: Rewrite the averaged system as a slowly time-varying system

˙̄θ = J(θ̄)ω̄

I ˙̄ω + C(ω̄)ω̄ + Dω̄ = J(θ̄)⊤Λ̄(t)
[

−1
2

∂h

∂θ

⊤
(θ̄)h(θ̄)

]
Lyapunov analysis:

V̇λ|avg = V̇λ|frozen + ∂Vλ

∂λ2
λ̇2(t)

The second term can be made arbitrarily small by choosing a sufficiently small
control parameter k2.
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Illustrative examples

Main result: Practically uniformly asymptotically stable

3D Paths Error Trajectories

0 10 20 30 40

-1

0

1

0 10 20 30 40

-2

0

2

13



To prove further:

B. Wang, S. Nersesov, H. Ashrafiuon, P. Naseradinmousavi, and
M. Krstic, “Underactuated Source Seeking by Surge Force
Tuning: Theory and Boat Experiments,” IEEE Transactions on
Control Systems Technology, Volume 31, Issue 4, July 2023, pp.
1649-1662.
B. Wang, “Semi-Global Nonholonomic Source Seeking by Torque
Tuning," arXiv, October 2025. (In preparation)
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Thank you!
bwang1@ccny.cuny.edu

https://bwang-ccny.github.io/

mailto:bwang1@ccny,cuny.edu

