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Abstract

This thesis studies a hybrid framework that combines reinforcement learning (RL) with

control barrier function (CBF)-based methods to achieve safe autonomous vehicle control,

focusing on parking with obstacle avoidance. We apply Deep Deterministic Policy Gradient

(DDPG) methods for continuous control and evaluate policies across three Simulink envi-

ronments of increasing fidelity: a kinematic model, a dynamic model, and a dynamic model

with actuator disturbance. In parking tasks, DDPG learns smooth, stable trajectories and

maintains performance under modeling uncertainty and input noise.

To address hard safety requirements in obstacle-rich settings, we augment the RL policy

with a CBF safety filter that enforces forward invariance of a state-based safe set in real time.

Experiments show that (i) reward shaping alone yields “soft safety” (avoidance behavior

without guarantees), (ii) post-hoc CBF filtering prevents collisions but can cause abrupt

corrections if the policy was not trained with the filter in the loop, and (iii) retraining

the agent with the CBF filter active achieves smooth, collision-free navigation with formal

constraint satisfaction.

In general, the RL-CBF approach preserves the adaptability of learning while providing

control-theoretic safety guarantees, pointing to a practical path for reliable autonomous

control in uncertain and nonlinear environments.



Contents

1 Introduction 5

1.1 Reinforcement Learning & Control: Background and Motivation . . . . . . . 5

1.1.1 Limitations of Classical Control Approaches . . . . . . . . . . . . . . 5

1.1.2 Motivation of Reinforcement Learning Control . . . . . . . . . . . . . 7

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Aerial Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Autonomous Ground Vehicles and Mobile Robots . . . . . . . . . . . 11

1.2.3 Safety-Critical Control Systems . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Industrial Robotics and Power Systems . . . . . . . . . . . . . . . . . 12

1.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Methodology 14

2.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 State, Action, and Reward . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Bellman Equation and Bellman Optimality Equation . . . . . . . . . 15

2.2 Model-Based Method vs. Model-Free Method . . . . . . . . . . . . . . . . . 15

2.2.1 Model-Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Model-Free Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Core Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . 19

3 Autonomous Parking Robot using DDPG 21

2



3

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Task Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 DDPG Agent Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Autonomous Parking with Kinematic Model . . . . . . . . . . . . . . . . . . 24

3.2.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Reward Function Design . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Autonomous Parking with Dynamic Model . . . . . . . . . . . . . . . . . . . 28

3.3.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Reward Function Design . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Autonomous Parking with Dynamic Model under Noisy Inputs . . . . . . . . 33

3.4.1 Noise Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Safety in Autonomous Control 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Obstacle Environment Setup and Goal . . . . . . . . . . . . . . . . . 37

4.2 Obstacle Avoidance using Reinforcement Learning Only . . . . . . . . . . . . 37

4.2.1 Reward Function Design . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Obstacle Avoidance using Control Barrier Functions . . . . . . . . . . . . . . 40

4.3.1 Control Barrier Functions for Kinematic Model . . . . . . . . . . . . 41

4.3.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Comparative Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions & Future Improvement 48

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



4

5.2 Future Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A Appendix 51

A.1 Source Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Chapter 1

Introduction

1.1 Reinforcement Learning & Control: Background

and Motivation

1.1.1 Limitations of Classical Control Approaches

Classical control theory has long served as the foundation of modern automation and

engineering systems. Techniques such as PID control, sliding mode control, and optimal

control have provided robust and interpretable solutions for decades, especially when ac-

curate mathematical models of the system dynamics are available. However, as control

applications expand toward increasingly complex, nonlinear, and uncertain environments,

such as autonomous driving, robotic manipulation, and energy systems, the assumptions

underpinning classical control become less tenable. [1]

Real-world control problems routinely violate the assumptions under which many clas-

sical designs are derived [2]. Practical systems exhibit uncertainties, strong nonlinearities,

unmodeled dynamics, time variation, and hard constraints on states and inputs [3]. Con-

structing a precise model for high-dimensional plants with coupled dynamics or unknown

parameters is difficult; even small modeling errors can degrade performance or compromise

stability [4]. In safety-critical settings, these gaps can lead to constraint violations or outright

failure.

5
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Common real-world violations of design assumptions include:

• Parametric uncertainty and drift: Physical properties of systems may change over

time due to payload variation, temperature, or other environmental conditions, leading

to model inaccuracies and degraded performance. In [5] analyzed how parametric

uncertainty and unmodeled dynamics affect robust stability, motivating the need for

adaptive and uncertainty-aware control strategies.

• Unmodeled nonlinearities: Effects such as friction, backlash, dead zones, saturation,

hysteresis, and rate limits are difficult to model precisely, and they can significantly

affect closed-loop stability. In [6] emphasized that nonlinearities and unmodeled in-

put dynamics often lead to unpredictable transient responses and degraded tracking

performance, posing major challenges for accurate control system design.

• Time variation and delays: Sensor and actuator delays, sampling jitter, and hybrid

switching behaviors introduce time-dependent uncertainty and can destabilize other-

wise well-tuned controllers. In [7] provided a comprehensive overview of delay-system

theory, showing that time delays not only degrade phase margins but can also lead to

oscillation and instability.

• High dimensionality and coupling: Multi-input–multi-output (MIMO) systems exhibit

strong coupling and high dimensionality, making low-order linear approximations inad-

equate for accurate modeling. In [8] reviewed decoupling strategies for industrial MIMO

processes and highlighted how system interactions complicate independent control loop

design.

• Hard constraints: State and input limits can cause actuator saturation and integrator

windup, resulting in nonlinear behavior or instability without proper anti-windup de-

sign. In [9] were among the first to formalize anti-windup techniques, demonstrating

how saturation-induced nonlinearities can be mitigated through feedback correction.

Classical controllers such as PID, Linear–Quadratic Regulator(LQR), and H∞ can be

highly effective when accurate models are available and operating conditions remain near the
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design point [2]. Robust and adaptive methods expand the envelope but still require struc-

tured uncertainty descriptions, sufficient excitation for parameter convergence, and meticu-

lous tuning; performance may deteriorate if these conditions are not met. Model Predictive

Control (MPC) directly handles constraints, yet hinges on model fidelity and can become

computationally burdensome for fast, high-dimensional systems unless substantial model re-

duction and tailored solvers are employed [3]. These limitations motivate data-driven and

learning-based approaches that can complement or enhance traditional methods by adapting

to uncertainties and capturing nonlinear behaviors from interaction data [10].

1.1.2 Motivation of Reinforcement Learning Control

There are many model-based approaches, like in [11] authors present a cascaded control

framework for underactuated surface vessels, where kinematic and dynamic subsystems are

analytically modeled to achieve stable leader–follower formation and trajectory tracking

under nonlinear dynamics. In contrast, RL offers a model-free, data-driven paradigm in

which a controller is learned directly from system interaction, rather than derived from a

fully specified plant model [12]. In RL, an agent observes the system state, selects actions,

receives feedback in the form of rewards, and iteratively improves its policy to maximize long-

term task performance [4]. With deep neural networks serving as function approximators,

deep reinforcement learning (DRL) extends these principles to nonlinear, high-dimensional,

and tightly coupled systems [3].

Why RL helps in complex control:

• Reduced dependence on exact models: model-free methods learn feedback directly from

the data and maintain performance under unmodeled dynamics and parameter drift

[10].

• Expressiveness for nonlinear, high-DOF plants: neural policies and critics capture

strong nonlinearities and cross-couplings that challenge linear or low-order designs [2].

• Direct task optimization: RL targets end objectives—tracking accuracy, energy use,

safety margins—without relying on analytic proxies; multi-objective trade-offs can be

encoded in rewards or constraints [12].
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• Robustness and adaptation: domain randomization, disturbance injection, and adver-

sarial training improve generalization in payload changes, delays, and environmental

variability; online fine-tuning can adapt policies with new data [3].

• Hybridization with models and constraints: model-based RL improves sample efficiency

using approximate dynamics; MPC+RL schemes use learned policies as warm starts

or terminal controllers; safety filters and backup policies provide constraint handling

[12].

• Sim-to-real transfer: training in high-fidelity simulators with calibration, randomiza-

tion, and residual learning enables deployment to hardware despite the reality gap

[10].

In summary, RL complements classical, robust, and predictive control by learning feed-

back laws that accommodate nonlinearities, uncertainty, and high-dimensional couplings

without requiring exact models [2]. Evidence from continuous control benchmarks and

emerging industrial applications indicates that DRL can deliver scalable and performance

controllers with real-world variability [3].

Control Loop Comparison: Classical vs RL

In order to better understand the role of RL as a control paradigm, it is helpful to

compare it directly with the classical feedback control loop. Both frameworks share the

same high-level goal: to generate control actions that guide the system output toward a

desired objective. However, the way they are structured and how information flows through

them are fundamentally different, as illustrated in Figure 1.1. In the traditional loop, r(t) the

reference input, y(t) the system output, e(t) = r(t)−y(t) the error signal, and u(t) the control

input are applied to the plant. In the RL loop, the agent receives an observation (system

state), selects an action to influence the environment, obtains a scalar reward measuring

task performance, and checks isDone to determine whether the episode has ended.
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r(t)
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e(t)
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(a) Traditional control loop.

observation

isDone
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action
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(b) Reinforcement learning control loop.

Figure 1.1: Comparison between a traditional control system and a reinforcement learning
agent.

The correspondence between the two paradigms can be summarized as follows:

• In classical control, r(t) encodes the desired behavior. In RL, this goal is encoded

within the reward function design.
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• The output y(t) of the plant corresponds to the observation that the agent receives.

• The error e(t) is used explicitly in traditional control, but in RL the same concept is

embedded implicitly in the reward, where smaller errors yield higher rewards.

• The control input u(t) in classical control is analogous to the action chosen by the RL

agent.

• The controller in classical systems is a designed feedback law (e.g., PID, LQR, MPC),

whereas in RL the agent learns a policy mapping observations to actions through

repeated interaction.

• Long-term performance in control is typically measured via steady-state error, over-

shoot, or energy usage; in RL, this corresponds to the return, the accumulated sum of

rewards over an episode.

In summary, traditional control relies on precise models and explicit error correction,

while reinforcement learning provides a data-driven framework that learns policies from

experience. This makes RL particularly attractive for systems with nonlinearities, uncer-

tainties, or hard-to-model dynamics, where classical methods struggle.

1.2 Literature review

RL has evolved from theoretical development to practical deployment across multiple

engineering domains, including aerial robotics, safety-critical systems, autonomous ground

vehicles, and energy systems. The reviewed literature highlights both the diversity of appli-

cations and the growing maturity of RL-based control strategies.

1.2.1 Aerial Robotics

In aerial robotics, RL has been employed to address highly nonlinear and fault-prone

dynamics. Studies have shown that RL outperforms model predictive control in quadrotor

morpho-transition maneuvers, where adaptability to actuator faults and contact uncertain-

ties is crucial [13]. Other works improved quadrotor robustness by integrating disturbance
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observers into RL controllers, significantly reducing hover error in real-world deployments

[14]. Transformer-assisted RL frameworks have also been proposed for fault-tolerant quadro-

tor control, enabling policies to adapt online to actuator failures without retraining [15].

In addition, real-time UAV operation has been validated through deployment of simulated

annealing–optimized TD3 controllers on hardware drones, outperforming backstepping and

sliding mode control baselines [16].

1.2.2 Autonomous Ground Vehicles and Mobile Robots

In autonomous ground vehicles and mobile robots, RL has demonstrated strong adapt-

ability and learning efficiency. Applications of the DDPG algorithm to vehicle path following

have achieved smoother and more accurate steering control compared to classical methods

[17]. RL frameworks based on end-to-end vision have also been introduced to avoid obsta-

cles, mapping the input of the monocular camera directly to actions, and depth prediction

improves robustness in navigation tasks [18].

Beyond steering control, deep RL has been used to improve trajectory tracking, lane

keeping, and parking maneuvers under complex and uncertain dynamics.In [19] a model-

free DDPG controller for autonomous driving was proposed that outperformed conventional

PID and MPC methods in dynamic lane change tasks. In [20] designed a hierarchical RL

framework that combines high-level decision-making with low-level continuous control to

allow safe overtaking and intersection navigation.

1.2.3 Safety-Critical Control Systems

For safety-critical and constrained dynamic systems, RL has been extended to include

formal guarantees on both stability and constraint satisfaction. Model-free frameworks such

as fitted Q-iteration have been developed to manage state and control constraints with-

out explicit models, while reachability-based methods like the Reachability-based Trajectory

Safeguard (RTS) integrate offline reachability analysis with online RL to ensure safe action se-

lection in continuous control tasks [21]. More recent studies have embedded control-theoretic

safety mechanisms directly into the RL framework: for example, a framework that uses Gaus-
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sian process-learned dynamics and a safety index to provide probabilistic forward-invariance

guarantees has been proposed [22]. Other work employs disturbance-observer-based CBF

filters as safety layers above RL to reduce violations under uncertainty [23]. Additional

methods combine CLF and CBF within actor-critic RL structures to jointly guarantee sta-

bility and safety [24]. Taken together, these advances illustrate how modern RL methods

are moving beyond purely performance-driven optimization toward frameworks that embed

formal safety certificates, constraint satisfaction, and safe exploration, thus paving the way

for deployment in real-world safety-critical control applications.

1.2.4 Industrial Robotics and Power Systems

In industrial robotics and power systems, RL has shown promise for real-time adaptabil-

ity under uncertainties. Online RL controllers have been developed for robotic manipulators

subject to large friction variations, outperforming computed torque, PD, iterative learning,

and adaptive neural controllers [25]. Comprehensive reviews of RL in power system opti-

mization highlight how model-free methods enable data-driven energy management, while

model-based methods improve interpretability and sample efficiency [26].

1.2.5 Summary

In general, these applications demonstrate that RL is capable of handling nonlinearities,

uncertainties, and safety constraints in diverse engineering domains. From UAVs and ground

vehicles to industrial manipulators and smart grids, RL is increasingly transitioning from

simulation to real-world deployment with measurable improvements over classical control

methods.

1.3 Thesis Organization

This thesis is organized into five chapters that progressively develop the integration of

reinforcement learning with safety-critical control principles.

• Chapter 1 introduces the background and motivation for applying reinforcement
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learning in control systems. It reviews the limitations of classical control approaches

in complex and uncertain environments and highlights the growing need for adaptive

and data-driven methods. The research gap and main contributions of this thesis are

also presented.

• Chapter 2 provides a theoretical foundation for reinforcement learning in the context

of control. It reviews the Bellman equation, model-based and model-free methods,

and key algorithms such as Monte Carlo (MC) methods, Temporal Difference (TD)

methods, and Actor–Critic methods.

• Chapter 3 presents the design and implementation of a reinforcement learning based

controller for an autonomous parking robot. The chapter formulates the environment

dynamics, defines the reward function, and details the training process of the DDPG

agent. Simulation results demonstrate how the agent learns goal-directed behavior

through interaction.

• Chapter 4 extends the RL framework by incorporating CBF to ensure safety during

motion. A hybrid RL–CBF scheme is proposed, and its performance is evaluated under

obstacle-avoidance scenarios. Comparative results between baseline RL and RL-CBF

controllers are discussed to illustrate the improvement in safety and stability.

• Chapter 5 concludes the thesis with a discussion of key findings, limitations, and

potential future directions. Suggestions are made for real-world implementation, multi-

agent extensions, and adaptive safety-critical learning frameworks.



Chapter 2

Methodology

2.1 Basic Principles

2.1.1 State, Action, and Reward

In RL, the interaction between an agent and its environment is modeled as a sequence

of discrete decisions [10]. At the core of this interaction are three key elements: state (s),

action (a), and reward (r) [12].

At each discrete time step t, the agent observes the current state st ∈ S, selects an action

at ∈ A, and receives a reward rt+1 ∈ R. The environment then transitions to a new state

st+1, governed by the transition probability P (st+1 | st, at)[4].

The agent’s goal is to learn a policy π(a | s), which maps states to probabilities of

selecting each action, to maximize the expected cumulative reward [10, 12]. Return of time

step t is defined as

Gt =
∞∑
k=0

γkrt+k+1 (2.1)

Where γ ∈ [0, 1] is the discount factor that determines the importance of future rewards

[3].

14
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2.1.2 Bellman Equation and Bellman Optimality Equation

The Bellman equation provides a recursive formulation of the value function, which

measures the expected return when starting in a state s and following the policy π [10, 3].

The state-value function V π(s) is defined as

V π(s) = Eπ [Gt | st = s] = Eπ

[
∞∑
k=0

γkrt+k+1 | st = s

]
(2.2)

The Bellman expectation equation for the value function is:

V π(s) =
∑
a

π(a | s)
∑
s′

P (s′ | s, a) [R(s, a, s′) + γV π(s′)] (2.3)

The corresponding action-value function Qπ(s, a) is defined as

Qπ(s, a) = Eπ [Gt | st = s, at = a] (2.4)

The Bellman optimality equation expresses the value under the optimal policy π∗ as:

V ∗(s) = max
a

∑
s′

P (s′ | s, a) [R(s, a, s′) + γV ∗(s′)] (2.5)

Q∗(s, a) =
∑
s′

P (s′ | s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(2.6)

These equations serve as the foundation for most RL algorithms, including value iteration,

Q-learning, and actor-critic methods [2, 3, 10].

2.2 Model-Based Method vs. Model-Free Method

RL algorithms can be broadly categorized into two classes: model-based methods and

model-free methods [10, 3]. The key difference lies in whether the agent has access to or

learns a model of the dynamics of the environment [4].
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2.2.1 Model-Based Method

Model-based reinforcement learning assumes knowledge of the environment’s transition

dynamics and reward structure [4, 12]. The model typically consists of the state transition

probability P (s′ | s, a) and the reward function R(s, a). With this model, the agent can

plan by simulating future trajectories, making model-based methods generally more sample-

efficient compared to model-free approaches [10, 3].

Two foundational algorithms in this category are value iteration and policy iteration,

both of which rely on dynamic programming principles [4].

Value Iteration

Value iteration updates the value function directly by repeatedly applying the Bellman

optimality operator [10, 3]. At each step, the algorithm estimates the expected return of

taking an action in a given state and then updates the state value accordingly. This process

continues until convergence, after which an optimal policy can be derived by acting greedily

with respect to the learned value function. Value iteration is guaranteed to converge to the

optimal value function for finite state and action spaces [4].

Policy Iteration

Policy iteration alternates between two key steps: policy evaluation and policy improve-

ment [4]. In the evaluation step, the value of the current policy is estimated, often through

iterative updates. In the improvement step, a new policy is derived by acting greedily with

respect to the estimated value function. This process continues until the policy stabilizes,

resulting in the optimal policy. Compared to value iteration, policy iteration can converge

more quickly in some cases because it refines the policy directly [3].

2.2.2 Model-Free Method

Model-free reinforcement learning does not rely on explicit knowledge of the environ-

ment’s transition probabilities or reward function [10, 12]. Instead, the agent learns directly

from experience by interacting with the environment. This makes model-free methods more
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flexible but often less sample-efficient. Three widely used approaches in model-free RL are

Monte Carlo methods, Temporal Difference methods, and Actor-Critic methods[10].

Monte Carlo Methods

Monte Carlo methods estimate value functions based on complete episodes of experience

[27]. By averaging the returns observed from many episodes, the agent approximates the

expected return for each state or state-action pair. Monte Carlo methods do not require

knowledge of the environment’s dynamics, but they rely on episodic tasks and can be slow

to converge because updates occur only at the end of an episode.

Temporal Difference Methods

Temporal Difference methods combine ideas from Monte Carlo and dynamic program-

ming [27]. Instead of waiting until the end of an episode, TD methods update value estimates

after each time step by bootstrapping the estimated value of the next state. This makes TD

methods more efficient and more suitable for online learning compared to Monte Carlo. Pop-

ular TD algorithms include State–Action–Reward–State–Action (SARSA) and Q-learning.

Actor-Critic methods

Actor-Critic methods combine the advantages of both value-based and policy-based ap-

proaches [28]. The actor is responsible for selecting actions according to a parameterized pol-

icy, while the critic evaluates these actions by estimating value functions. The critic provides

feedback to the actor by computing gradients that guide policy improvement. This separa-

tion allows actor-critic methods to handle large or continuous action spaces more effectively

than purely value-based methods. Well-known examples include Advantage Actor-Critic

(A2C) and Asynchronous Advantage Actor-Critic (A3C) [29].

2.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient is an actor-critic reinforcement learning algorithm

designed for environments with continuous action spaces. It was introduced by Lillicrap et al.
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[30] and extends the Deterministic Policy Gradient (DPG) theorem [31] by integrating deep

neural networks. DDPG has been widely applied to robotic control, autonomous driving,

and other continuous control tasks.

2.3.1 Core Idea

DDPG builds upon the Deterministic Policy Gradient theorem, which states that the

gradient of the expected return with respect to policy parameters can be written as [30]

∇θµJ(θ
µ) = Es∼ρµ

[
∇aQ

µ(s, a | θQ)
∣∣
a=µ(s)

∇θµµ(s | θµ)
]
, (2.7)

where µ(s | θµ) is a deterministic policy parameterized by θµ, and Qµ(s, a | θQ) is the action

value function parameterized by θQ.

Unlike stochastic policy gradient methods, which require sampling from a distribution

over actions, DDPG directly learns a deterministic mapping from states to actions, making

it suitable for high-dimensional continuous control.

Architecture

DDPG employs an actor-critic framework with four neural networks [30]:

• Actor network µ(s | θµ): outputs a deterministic action given a state.

• Critic network Q(s, a | θQ): estimates the action-value function.

• Target actor network µ′(s | θµ′
): a delayed copy of the actor for stable learning.

• Target critic network Q′(s, a | θQ′
): a delayed copy of the critic.

Training Mechanism

The training of the DDPG agent involves several interconnected components designed to

ensure stable learning in continuous control environments.
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Experience Replay. All observed transitions, consisting of the current state, action, re-

ward, and next state, are stored in a replay buffer. During training, the agent samples

random mini-batches from this buffer to break temporal correlations between consecutive

experiences. This process improves data efficiency and stabilizes the learning updates.

Critic Update. The critic network, which estimates the action-value function, is trained

to minimize the mean-squared error between its predictions and a target value computed

from the reward and the next-state estimate. This iterative update refines the critic’s ability

to evaluate how good a particular action is in a given state.

Actor Update. The actor network, representing the policy, is updated using the gradient

of the critic’s estimated value with respect to the action. This allows the actor to adjust its

parameters in the direction that increases the expected return, effectively learning how to

choose better actions based on the critic’s feedback.

Target Network Update. To prevent instability caused by rapidly changing value tar-

gets, DDPG maintains separate target networks for both the actor and critic. These target

networks are updated gradually using a soft-update mechanism that blends the new weights

with previous ones at a small rate. This slow update process smooths learning and improves

convergence.

Exploration. Because the policy in DDPG is deterministic, an external noise process is

added to the actor’s output during training to encourage exploration. This noise is often

generated using an Ornstein–Uhlenbeck process, which produces temporally correlated fluc-

tuations suitable for physical control tasks that require smooth changes in action values.

2.3.2 Advantages and Limitations

DDPG offers several advantages in the context of continuous control problems. It can

efficiently handle high-dimensional continuous action spaces, making it suitable for robotic

and autonomous systems that require smooth and precise control input [32]. Using de-

terministic policy gradients, DDPG achieves higher sample efficiency compared to purely
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stochastic policy methods, as it directly optimizes a deterministic policy without relying

on action sampling noise. The integration of experience replay and target networks further

stabilizes the learning process by breaking the correlations between consecutive samples and

providing slowly updated targets.

Despite these strengths, DDPG also exhibits notable limitations. The algorithm is highly

sensitive to hyperparameter choices, network initialization, and exploration noise. Improper

tuning can lead to divergence, suboptimal convergence, or overly conservative behavior. Ad-

ditionally, the deterministic nature of its policy makes exploration challenging, particularly

in environments with sparse rewards or multi-model dynamics. The stability of DDPG

heavily depends on the careful implementation of target network updates and replay buffer

management.

In practice, DDPG has been successfully applied to a wide range of domains, such as

robotic manipulation, autonomous driving, UAV control, and energy management systems,

where continuous and precise control is essential [17, 16, 13].



Chapter 3

Autonomous Parking Robot using

DDPG

3.1 Introduction

3.1.1 Background

Autonomous parking represents a fundamental benchmark problem for intelligent vehicle

control. In its simplest form, the task requires moving the vehicle from a given initial state to

a specified target pose with both position and orientation accuracy. Unlike lane following or

trajectory tracking, the parking problem demands precise maneuvering in a confined region,

making it an ideal testbed for evaluating reinforcement learning algorithms in continuous

control domains. As noted by Yuan et al. [33], automated parking in narrow spaces requires

rapid and accurate generation of collision-free trajectories and handles multiple narrow-space

constraints, underscoring the complexity and precision demands of the task.

In this section, the parking problem is formulated without obstacles or environmental

uncertainties. The objective is to demonstrate that a reinforcement learning agent, trained

with the DDPG algorithm, can learn effective control policies to drive the vehicle from a

randomly initialized location to a predefined goal location. To investigate this, three levels

of modeling fidelity are considered. The kinematic model provides a simplified baseline

suitable for low-speed maneuvers. A dynamic model is then introduced to capture inertial
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effects and actuator dynamics. Finally, the model is extended with noisy inputs to evaluate

the robustness of the learned policies under more realistic conditions.

(𝑥, 𝑦)

𝜃

(𝑣𝑦, 𝑤𝑦)

Figure 3.1: Autonomous model’s states (x, y, θ) and velocity inputs.

3.1.2 Task Objective

The parking task is formulated in a two-dimensional plane with a bounded square

workspace of size 20 × 20. The vehicle is initialized at random positions and orientations

within this workspace at the beginning of each episode. The mission goal is to drive the

vehicle to a designated target pose, defined by a specific position and orientation.

The episode terminates when the vehicle reaches the goal pose within a tolerance re-

gion, when the maximum step limit is exceeded, or when the vehicle leaves the workspace

boundaries. This setup provides a controlled environment in which the agent must learn to

generalize across different initial conditions while consistently converging to the same final

target.

3.1.3 DDPG Agent Setup

The DDPG agent is designed to solve the autonomous parking problem formulated in the

Simulink environment. The agent operates with continuous state and action spaces, which

makes it well suited for vehicle control tasks that require smooth commands.
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State and Action Spaces

For the kinematic model, the observation vector consists of five states: (x, y, θ, v, ω),

where x and y represent the position of vehicle, θ for the orientation angle, v for the linear

velocity, and ω for the angular velocity. The action vector is two-dimensional, consisting of

the commanded v and ω.

For the dynamic model, the observation vector is extended to seven states: (x, y, θ, v, ω, uL, uR),

where uL and uR represent the wheel-input forces applied to the left and right wheels. The

action vector is also two-dimensional, consisting of the commanded wheel forces (uL, uR).

By including both wheel inputs in the state and action spaces, the agent is provided with

information about the vehicle’s actuation dynamics in addition to its pose and velocities,

which makes the control task more realistic and challenging.

For compatibility with the DDPG algorithm, both actions are normalized to the interval

[−1, 1]. This normalization is required because the actor network is designed to output

bounded actions, which improves numerical stability during training and prevents divergence.

The normalized actions can then be rescaled to match the physical actuator limits of the

vehicle model.

Actor and Critic Networks.

The actor network receives the observation vector as input and maps it to continuous

control actions. It is composed of two fully connected hidden layers with 128 neurons, each

followed by an output layer that generates the linear and angular velocity commands.

The critic network is designed to estimate the state-action value. It has two input chan-

nels: one for the observation vector and one for the action vector. Each channel is processed

through fully connected layers before being merged into a shared pathway. This combined

representation is then passed through an additional fully connected layer and a final output

neuron, producing the scalar Q-value of the state-action pair.

Both the actor and the critic are implemented using the MATLAB Reinforcement Learn-

ing Toolbox and trained jointly within the DDPG framework.
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Exploration Strategy.

During training, exploration noise is added to the actions to encourage diverse experi-

ences. A Gaussian noise process with decaying variance is employed, starting with a standard

deviation of 0.1 and decreasing to 0.01 over the course of training. This enables broad ex-

ploration in the early stages while promoting policy refinement later on.

Training Parameters.

The agent is trained using experience replay with a buffer size of 106. Mini-batches

of size 512 are sampled for updates. Both actor and critic networks are trained with the

Adam optimizer using a learning rate of 10−3. The discount factor is set to 0.995, and

target networks are updated using a smoothing factor of 10−3. Training is conducted for

a maximum of 10,000 episodes, each lasting up to 30 seconds of simulated time. Early

stopping is triggered if the average reward exceeds 1000, and agents are saved when the

episodic reward reaches 400 or higher.

Environment Reset.

At the beginning of each episode, the vehicle is initialized at a random location on a

circle of radius 10 within the 20 × 20 workspace. Its orientation is also randomized. This

ensures that the agent encounters a wide range of initial conditions, which improves the

generalization capability of the learned policy.

3.2 Autonomous Parking with Kinematic Model

3.2.1 Kinematic Model

The vehicle is modeled using a unicycle kinematic representation, which provides a sim-

plified yet effective description of motion for low-speed maneuvers such as parking. This

model captures the essential nonholonomic constraint of wheeled vehicles, namely that lat-

eral motion cannot be commanded directly.
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The state vector is defined as

s =
[
x y θ v ω

]T
, (3.1)

where x and y denote the position of the vehicle in the global coordinate frame, θ is the

orientation (heading angle), v is the linear velocity, and ω is the angular velocity.

The control inputs to the system are the linear velocity v and the angular velocity ω.

The vehicle’s motion is then described by the following equations [34]:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω. (3.2)

This formulation assumes negligible slip and dynamic effects, which is reasonable for

low-speed parking maneuvers. In the reinforcement learning framework, the agent outputs

continuous values of v and ω within the normalized interval [−1, 1], which are then scaled

to match the physical limits of the vehicle. This kinematic model serves as the baseline for

evaluating the DDPG agent before extending the analysis to more realistic dynamic and

noisy models in later sections.

3.2.2 Reward Function Design

The design of the reward function plays a crucial role in reinforcement learning, as it

guides the agent toward the desired parking behavior. In this study, the reward is designed

to encourage convergence to the target pose while penalizing inefficient or undesirable actions.

The total reward R is expressed as the weighted sum of several components:

R = Rpos +Rθ + Ppos + Pboundary + Psmooth + Pturn, (3.3)

where each term is defined as follows.

Position Reward: The primary objective is to minimize the squared distance to the target

position (xtar, ytar) = (0, 0). A shaping function is used to provide higher reward as the agent
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approaches the goal:

Rpos =
10

1 + 3(x− xtar)2 + 3(y − ytar)2
. (3.4)

Position Penalty: To further discourage large deviations from the target, a quadratic

penalty term is included:

Ppos = −0.01
(
3(x− xtar)

2 + 3(y − ytar)
2
)
. (3.5)

Orientation Reward: If the vehicle reaches sufficiently close to the target position and

aligns with the target orientation θtar = 0, an additional bonus is given:

Rθ =

5, if
(
(x, y) ≈ (0, 0) and |θ − θtar| < 0.5

)
,

0, otherwise.

(3.6)

Boundary Penalty: If the agent leaves the predefined workspace, a large penalty is ap-

plied:

Pboundary = −100. (3.7)

Action Smoothness Penalty: To encourage smooth control, large changes in velocity

are penalized:

Psmooth = −0.01 (∆v)2, (3.8)

where ∆v is the change in linear velocity between successive actions.

Sharp Turning Penalty: Similarly, sharp variations in angular velocity are penalized:

Pturn = −0.01 (∆ω)2. (3.9)

Overall Reward: The combination of these terms encourages the agent to approach the

target efficiently, align with the correct orientation, and use smooth, stable control actions

while avoiding boundary violations.
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3.2.3 Results and Discussion

The performance of the DDPG agents under the kinematic model is illustrated in Fig. 3.2.

Figure 3.2a shows the trajectories of Agent 1 and Agent 2 from different initial positions to

the target pose at the origin. Both agents successfully converge to the goal region, demon-

strating the ability of the learned policy to generalize across different starting conditions.

The trajectories are smooth, and the final positions align well with the target, indicating

that the reward function effectively guides the agent toward both position and orientation

accuracy.

Figure 3.2b presents the evolution of the state variables during the parking maneuver.

The position errors in both the x and y directions decrease steadily as the vehicle approaches

the goal, while the orientation error converges to zero. The linear and angular velocities also

stabilize, which reflects the smooth control actions encouraged by the penalties on abrupt

velocity changes in the reward function.

Overall, the results confirm that the DDPG agent trained under the kinematic model can

learn effective parking policies. Both agents exhibit consistent performance, suggesting that

the policy is not over-fitted to a particular initial condition. This validates the kinematic

model as a suitable baseline for autonomous parking tasks before extending the analysis to

more complex models that incorporate dynamics and noise.

(a) Trajectory. (b) State evolution.

Figure 3.2: Robot trajectory and state evolution under the kinematic model for Agent 1 and
Agent 2.
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Figure 3.3: Training performance of the RL DDPG Agent in the kinematic model’s environ-
ment.

3.3 Autonomous Parking with Dynamic Model

3.3.1 Dynamic Model

To account for the inertial properties of the vehicle, a dynamic model is used in place of

the simplified kinematic formulation. This model incorporates mass, moment of inertia, and

wheel actuation, resulting in a more realistic description of the system behavior.

The state vector is defined as

s =
[
x y θ v ω uL uR

]T
, (3.10)

where x and y denote the vehicle position in the global frame, θ is the orientation angle,
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v is the linear velocity, ω is the angular velocity, and uL and uR represent the forces applied

to the left and right wheels, respectively.

The system parameters are: vehicle mass m = 10 kg, rotational inertia I = 5 kg · m2,

wheel radius r = 0.1 m, and half of the wheelbase Ri = 0.2 m.

The vehicle dynamics are governed by the following equations[35]:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (3.11)

v̇ =
1

mr
(uL + uR), ω̇ =

2Ri

Ir
(uL − uR). (3.12)

This formulation links the wheel-level forces directly to the translational and rotational

accelerations of the vehicle. By including the wheel inputs uL and uR in the state vector,

the agent is fully aware of the actuation dynamics, making the control task more challenging

compared to the kinematic model. The dynamic model provides a more realistic benchmark

for testing reinforcement learning approaches to autonomous parking.

3.3.2 Reward Function Design

For the dynamic model, the reward function is constructed to balance accurate goal-

reaching with smooth and physically feasible control actions. The overall reward is defined

as the sum of multiple components:

R = Rpos + Ppos +Rθ + Pboundary + Psmooth + Pturn + Pω + Ptorque, (3.13)

where each term is described below.

Position Reward and Penalty: The agent is encouraged to minimize the squared dis-

tance to the target position (xtar, ytar) = (0, 0). A shaping reward is provided as

Rpos =
10

1 + 3(x− xtar)2 + 3(y − ytar)2
, (3.14)
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while a quadratic penalty discourages large deviations:

Ppos = −0.01
(
3(x− xtar)

2 + 3(y − ytar)
2
)
. (3.15)

Orientation Reward: If the vehicle is within a small neighborhood of the target and

aligned with the desired orientation θtar = 0, a bonus is awarded:

Rθ =

5, if ∥(x, y)∥ < 0.5 and |θ − θtar| < 0.5,

0, otherwise.

(3.16)

Boundary Penalty: Leaving the workspace results in a large penalty:

Pboundary = −100. (3.17)

Action Smoothness Penalty: To promote gradual changes in linear velocity, abrupt

variations are penalized:

Psmooth = −0.03(v − v0)
2, (3.18)

where v0 is the linear velocity from the previous step.

Sharp Turning Penalty: Similarly, sudden changes in angular velocity are discouraged:

Pturn = −0.05(w − w0)
2, (3.19)

where w0 is the angular velocity from the previous step.

Angular Velocity Penalty: Excessively large angular velocities are penalized to prevent

unstable spinning:

Pω =

−0.01w2, |w| > 1.0,

0, otherwise.

(3.20)
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Torque Penalties: Two additional penalties regulate the wheel inputs. First, a penalty

on the overall magnitude of the wheel torques:

Ptorque,total = −0.01(u2
L + u2

R), (3.21)

and second, a penalty on large differences between the left and right wheels:

Ptorque,diff = −0.01(uL − uR)
2. (3.22)

Overall Rewards: The combination of these terms encourages the agent to reach the

parking goal accurately, maintain smooth velocity and turning profiles, and avoid unrealis-

tic actuation. Compared to the kinematic case, the dynamic reward design places greater

emphasis on smoothness and torque regulation, which reflects the added complexity of con-

trolling a vehicle with inertia and input constraints.

3.3.3 Results and Discussion

The performance of the DDPG agents under the dynamic model is illustrated in Fig. 3.4.

Figure 3.4a shows the trajectories of Agent 1 and Agent 2 from different initial positions to

the target pose at the origin. Both agents are able to reach the goal successfully, confirming

that the dynamic model policies converge despite the additional complexity of inertia and

torque-driven actuation. Compared to the kinematic model, the trajectories appear less

direct and contain small oscillations, which reflects the increased difficulty of regulating

acceleration and wheel inputs.

Figure 3.4b presents the evolution of the vehicle states. The position variables x and

y converge smoothly to the target values, while the orientation angle θ also stabilizes near

the goal pose. However, compared with the kinematic case, the convergence of both v and

ω is less stable, exhibiting oscillations before settling. This behavior can be attributed to

the dynamic effects: the agent must learn to compensate for inertia, torque balance, and

actuation delays, which makes precise control more challenging.

Overall, the results demonstrate that the DDPG agent can still learn effective parking
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policies under the dynamic model. While the kinematic model produced smoother and more

direct trajectories, the dynamic model captures more realistic vehicle behavior, including

overshoot and oscillations in velocity and angular velocity. These results highlight the trade-

off between simplicity and realism: the kinematic model provides a clean baseline, while the

dynamic model exposes the agent to challenges closer to real-world conditions.

(a) Trajectory. (b) State evolution.

Figure 3.4: Robot trajectory and state evolution under the dynamic model for Agent 1 and
Agent 2.
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Figure 3.5: Training performance of the RL DDPG Agent in the dynamic model’s environ-
ment.

3.4 Autonomous Parking with Dynamic Model under

Noisy Inputs

3.4.1 Noise Modeling

To assess the robustness of the learned policy, band-limited white noise was added to the

wheel input forces uL and uR in the Simulink environment. Band-limited white noise is a ran-

dom signal with zero mean and constant power spectral density within a specified frequency

range. Unlike ideal white noise, which has infinite bandwidth and is physically unrealizable,

the band-limited version constrains the frequency content, making the disturbances bounded

and more representative of actuator uncertainties in real systems [36].
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The reward function design remains identical to the Section 3.3. By keeping the same

reward structure, the difference in performance can be attributed directly to the effect of

noisy inputs rather than to changes in the learning objective. This allows for a clear com-

parison between the noise-free and noisy dynamic environments, highlighting the policy’s

robustness under actuation disturbances.

3.4.2 Results and Discussion

The results of the DDPG agents under the dynamic model with noisy wheel inputs are

shown in Fig. 3.6. Figure 3.6a illustrates the trajectories of Agent 1 and Agent 2 when band-

limited white noise is injected into the left and right wheel torques. Despite the disturbances,

both agents are still able to reach the target parking pose successfully. Compared with

the noise-free dynamic model, the trajectories exhibit larger deviations and less smooth

curvature, indicating the effect of input uncertainty on path execution.

Figure 3.6b presents the evolution of the state variables. The position and orientation

states converge to the goal, but the velocity profiles (v and ω) display stronger oscillations

than in the deterministic case. These fluctuations reflect the agent’s attempts to correct for

noisy actuation, particularly in angular velocity control. Nevertheless, the added penalties

in the reward function for large torque magnitudes and differences help maintain stability,

preventing divergence or instability in the trajectories.

Overall, the comparison shows that the learned policy retains robustness against actuator-

level noise. While the dynamic model produced smoother results in the absence of distur-

bances, the noisy case highlights realistic challenges that reinforcement learning controllers

must overcome. The ability of both agents to park reliably under noise demonstrates the

potential of DDPG to handle uncertain inputs, although at the cost of increased control

effort and less stable velocity responses.
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(a) Trajectory. (b) State evolution.

Figure 3.6: Robot trajectory and state evolution under the dynamic model with noise input
for Agent 1 and Agent 2.

Figure 3.7: Training performance of the RL DDPG Agent in the dynamic noise model’s
environment.



Chapter 4

Safety in Autonomous Control

4.1 Introduction

4.1.1 Background

Safety is a central requirement in autonomous systems, especially in safety-critical ap-

plications such as autonomous driving, robotic navigation, and aerial vehicles. Even small

violations of safety constraints, such as collisions or entering restricted regions, can result

in system failure or hazardous outcomes. RL has shown strong adaptability in learning

complex behaviors from interaction, but its trial-and-error nature provides no guarantee of

safety during training or execution. This motivates the need for additional mechanisms that

can enforce safety constraints.

Safety-critical control methods such as CBF and CLF enforce system safety by guaran-

teeing forward invariance of a safe set under appropriate control inputs [37]. CBF provides

a model-based mathematical framework for guaranteeing safety. By constructing a barrier

function that defines a safe set, the method ensures that system states remain within this

set for all time. CBF achieve this by imposing inequality constraints on admissible control

inputs, effectively filtering unsafe actions while still allowing flexibility within the safe region

[38, 39].

When compared directly, RL and CBF represent two complementary paradigms. RL

excels in handling high-dimensional, uncertain, and nonlinear systems but lacks inherent

36
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safety guarantees. CBFs, on the other hand, provide provable safety but rely on simplified

system models and may be less effective in highly uncertain environments[40]. Integrating

RL with CBF offers the potential to combine the adaptability of data-driven learning with

the rigorous safety guarantees of barrier functions.

4.1.2 Obstacle Environment Setup and Goal

To evaluate safety mechanisms, a uniform circular obstacle in the environment is con-

sidered. The agent is tasked with reaching a specified goal position while avoiding collisions

with the obstacle. This scenario captures one of the most fundamental safety challenges in

autonomous navigation—maintaining progress toward the objective while respecting hard

safety constraints. By using a simple yet representative obstacle setup, the problem be-

comes tractable for analysis while still highlighting the strengths and limitations of different

approaches. This environment therefore enables a direct comparison between a purely RL-

based obstacle avoidance strategy and a CBF-based method, providing valuable insights into

how learning-based and model-based safety frameworks perform under identical conditions.

4.2 Obstacle Avoidance using Reinforcement Learning

Only

4.2.1 Reward Function Design

In this section, the focus is on modifying the reward function to enable the agent to per-

form the obstacle avoidance task. The updated reward function builds upon the formulation

used in the dynamic model (Eq. 3.2) by adding a penalty term that accounts for the presence

of obstacles. This ensures that the agent learns not only to reach the goal pose but also to

avoid unsafe regions around obstacles.

The distance between the robot position (x, y) and the obstacle center (xobs, yobs) is

defined as

dobs =
√

(x− xobs)2 + (y − yobs)2. (4.1)
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If the robot approaches the obstacle boundary—defined by the obstacle radius robs plus

a safety margin ∆r—a penalty is applied as

Pobs = − 10

1 + 5 (dobs − robs −∆r)2
. (4.2)

This penalty increases rapidly as the robot enters the unsafe region surrounding the obstacle,

effectively discouraging trajectories that approach or collide with it.

The overall reward for the obstacle-avoidance task is therefore

R = Rpos + Ppos +Rθ + Pboundary + Psmooth + Pturn + Pω + Ptorque + Pobs, (4.3)

where the terms Rpos, Ppos, Rθ, Pboundary, Psmooth, Pturn, Pω, and Ptorque follow the definitions

in Eq. 3.2.

By incorporating the obstacle penalty Pobs, the agent is explicitly guided to maintain

a safe distance from obstacles while still achieving the navigation goal. This modification

allows reinforcement learning to handle safety constraints through a learned, reward-based

approach.

4.2.2 Results and Discussion

Figure 4.1 illustrates the trajectories of Agent 1 and Agent 2 navigating an environment

containing a circular obstacle. Both agents start from different initial positions and suc-

cessfully reach the designated goal pose. The learned policies generate smooth, continuous

motions that generally curve around the obstacle region while maintaining stable convergence

to the goal for most of the locations.

Although both agents exhibit obstacle avoidance behavior for most of the locations,

safety violations can still be observed in some locations. In certain areas, the trajectories

collide with the obstacle’s safety margin, indicating that the reward-based penalty encourages

avoidance but cannot fully guarantee constraint satisfaction. This phenomenon reflects the

inherent limitation of soft safety in reinforcement learning, where constraint enforcement

depends on how strongly the penalty terms influence policy optimization.
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Overall, the results demonstrate that reinforcement learning, when guided by a carefully

designed reward function, can achieve adaptive and largely safe navigation in environments

with static obstacles. However, since safety is enforced only through reward shaping, the

learned policy still compromises strict safety in favor of smoother convergence or shorter

travel time. To obtain hard safety guarantees, integrating a model-based safety mechanism

such as a CBF can explicitly enforce state constraints during policy execution, ensuring

provable safety even in uncertain or high-risk regions.

Figure 4.1: Robot trajectory with obstacle avoidance.
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Figure 4.2: Training performance of the RL DDPG agent in the dynamic model environment
with an obstacle.

4.3 Obstacle Avoidance using Control Barrier Func-

tions

Motivation for a Safety Filter: While the reward-based approach enables adaptive

obstacle avoidance, it cannot guarantee strict constraint satisfaction in all cases. Therefore,

to provide mathematically provable safety, the following section introduces CBF as a real-

time safety filter that modifies the RL agent’s control commands only when necessary. In

this section, the CBF is integrated into the RL control loop, as illustrated in Figure 4.3, to

complete the obstacle avoidance task.
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4.3.1 Control Barrier Functions for Kinematic Model

CBF provide a model-based framework to enforce safety constraints in control systems.

Unlike reinforcement learning, which encourages safety indirectly through reward shaping,

CBF guarantee forward invariance of a safe set by imposing inequality constraints on the

control input.

For the unicycle kinematic model, the state vector is defined as

s =
[
x y θ

]T
,

with dynamics,

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω,

where v and ω denote linear and angular velocities, respectively.

Consider a circular obstacle centered on (xobs, yobs) with radius robs and safety margin

∆r. The safe set is defined as

C =
{
(x, y) ∈ R2

∣∣∣ h(x, y) = (x− xobs)
2 + (y − yobs)

2 − (robs +∆r)2 ≥ 0
}
. (4.4)

The barrier function h(x, y) ensures that the robot remains outside the unsafe region.

The CBF condition

ḣ(x, y) + α(h(x, y)) ≥ 0 (4.5)

preserves the forward invariance of the safe set, which α(·) is an extended classK function

(commonly α(h) = γh with γ > 0).

At each time step, the safety filter solves the following quadratic program (QP):

u∗(x, y) = argmin
u∈U

∥u− udes(x, y)∥2 (4.6)

subject to

Lfh(x, y) + Lgh(x, y)u ≥ −α(h(x, y)), (4.7)

where udes = [vdes, ωdes]
T the nominal control input is generated by the RL policy.
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A closed-form solution to QP [38] is

u∗(x, y) = udes(x, y) + usafe(x, y), (4.8)

with

usafe(x, y) =


− Lgh(x, y)

⊤

Lgh(x, y)Lgh(x, y)⊤
Ψ(x;udes), if Ψ(x, y) < 0,

0, if Ψ(x, y) ≥ 0,

(4.9)

and

Ψ(x, y) = Lfh(x, y) + Lgh(x, y)udes(x, y) + αh(x, y) (4.10)

where α > 1 is a design constant that determines the strictness of the safety constraint.

For a uniform circle obstacle, the Lie derivative is given by:

Lfh(x, y) = 0 (4.11)

Lgh(x, y) =
[
2(x− xobs) cos θ + 2(y − yobs) sin θ 0

]
=

[
a 0

]
(4.12)

The safety condition can therefore be expressed as

Ψ(x, y) = audes + αh(x, y). (4.13)

Accordingly, the safe control input is defined as

usafe(x, y) =


−udes −

α

a
h(x, y), if Ψ(x, y) < 0,

0, if Ψ(x, y) ≥ 0,

(4.14)

and the resulting control correction applied to the RL command is

u∗(x, y) =


−α

a
h(x, y), if Ψ(x, y) < 0,

0, if Ψ(x, y) ≥ 0,

(4.15)
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This formulation ensures that the control input remains as close as possible to the nominal

RL command while enforcing safety. In practice, the CBF acts as a real-time safety filter,

overriding unsafe commands only when the system approaches the obstacle boundary [38].

4.3.2 Model Setup

The overall obstacle-avoidance controller combines the RL policy with a CBF safety filter,

as shown in Fig. 4.3. The RL agent produces a nominal control udes based on observed states,

while the CBF layer evaluates safety in real time and applies a corrective term usafe. The

applied control input is therefore

u∗ = udes + usafe. (4.16)

When the robot is far from the obstacle, the safety filter remains inactive (usafe = 0),

allowing the RL policy to operate freely. As the robot approaches the unsafe region, the

CBF modifies the command to ensure the safety constraint as Eq.4.7 is satisfied at all

times. This framework preserves the adaptability of reinforcement learning while introducing

mathematically guaranteed safety.
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Figure 4.3: Integration of the reinforcement learning controller with the CBF safety filter.

4.3.3 Results and Discussion

Baseline Agent without CBF

Figure 4.4 shows the trajectory of the baseline RL agent uses the policy obtained from

the training process described in Section 3.2, which was trained under the kinematic model

without any safety constraints. The agent moves directly toward the goal, passing through

the obstacle region, indicating that it lacks safety awareness and focuses solely on minimizing

the distance to the goal.
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Figure 4.4: Trajectory of the baseline RL agent trained without CBF. The agent moves
directly toward the goal without obstacle-avoidance capability.

Baseline Agent with CBF Filter

In this case, the baseline RL agent from Section 3.2 has no awareness of the obsta-

cle information; however, a CBF-based safety filter is applied, as illustrated in Figure 4.3.

As shown in Figure 4.5, the baseline pre-trained agent demonstrates a slight tendency to

deviate from the obstacle’s region, suggesting some incidental avoidance behavior learned

during training. However, because the agent was never explicitly exposed to obstacle-related

penalties or safety constraints, it fails to reach the target position and exhibits unstable and

erratic motions near the obstacle boundary. The trajectory becomes disordered as the CBF

repeatedly overrides unsafe control commands from the RL policy, leading to oscillations and

loss of smoothness. Overall, although a CBF filter is applied during testing, the policy itself

was not trained with safety awareness, resulting in abrupt and unstable corrections when

approaching the obstacle.
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Figure 4.5: Trajectory of the pre-trained RL agent tested with a CBF filter. The agent tends
toward the goal but shows irregular motion near the obstacle.

Re-trained Agent

In this case, the RL agent retrained with the CBF filter as illustrated in Figure 4.3.

The reward functions, which are the same as Section 3.2 have no awareness of the obsta-

cle. Figure 4.6 shows that the re-trained agent achieves smooth, consistent trajectories from

multiple initial positions, maintaining a safe distance around the obstacle while reaching the

goal. Compared with the pre-trained agent, the re-trained model exhibits better coordina-

tion with the safety filter, demonstrating stable, cooperative behavior between data-driven

learning and model-based constraint enforcement.
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Figure 4.6: Trajectories of the re-trained RL agent with CBF filter. The agent maintains a
safe distance from the obstacle while converging smoothly to the goal.

4.4 Comparative Discussion

The four cases—RL only, baseline agent only, baseline agent with CBF, and retrained

agent with CBF add-on demonstrate a clear progression in safety performance. The RL-only

agent demonstrates successful task completion in most trials; however, it fails to maintain

safety in certain trials. The baseline RL agent ignores obstacles entirely. Adding a reward

penalty introduces soft safety, producing avoidance behavior dependent on reward weighting.

Applying a CBF filter during testing improves safety but causes abrupt control corrections

since the policy was not trained with it. Finally, retraining the RL agent in a CBF-augmented

environment results in smooth, reliable avoidance and formal safety guarantees. This pro-

gression confirms that integrating model-based CBF safety into the learning process achieves

both adaptability and provable constraint satisfaction.



Chapter 5

Conclusions & Future Improvement

5.1 Conclusions

This thesis explored the application of RL and CBF in autonomous vehicle control, with a

particular focus on parking and obstacle-avoidance scenarios. Through progressive modeling

and simulation, the research demonstrated how data-driven and model-based methods can

be integrated to achieve both adaptability and safety in control systems.

The study began by identifying the fundamental limitations of classical control ap-

proaches, such as their reliance on precise mathematical models and limited adaptability

to nonlinearities, parameter variations, and unmodeled dynamics. RL was then introduced

as a data-driven alternative that learns control policies through interaction, capable of han-

dling high-dimensional and nonlinear systems without requiring explicit models. The DDPG

algorithm was selected for its suitability in continuous control problems.

The autonomous parking task served as the primary benchmark for evaluating RL perfor-

mance. Starting with a simplified kinematic model, the DDPG agent successfully learned to

park the robot with smooth trajectories and stable convergence. The study then extended

to a dynamic model incorporating vehicle inertia and torque-based actuation, confirming

that the RL agent could adapt to more complex and realistic system dynamics. When

band-limited noise was introduced to simulate actuator uncertainties, the trained policy

maintained robustness and achieved reliable convergence, demonstrating the resilience of

the learned controller against disturbances.
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To address safety in autonomous control, the study examined obstacle-avoidance scenar-

ios using both reinforcement learning and control barrier functions. The RL-based approach

achieved “soft safety” by incorporating an obstacle penalty term in the reward function,

which guided the agent to avoid collisions while pursuing the goal. However, the approach

lacked strict safety guarantees, as avoidance performance depended on the weighting of the

penalty. To overcome this limitation, CBF were introduced as a safety filter capable of ensur-

ing forward invariance of a safe set. The integration of RL with CBF allowed the system to

maintain adaptability while providing provable safety. Experimental results confirmed that

an RL agent retrained in a CBF-augmented environment achieved smooth, reliable obstacle

avoidance while maintaining formal safety guarantees.

Overall, this research demonstrated that reinforcement learning can effectively learn au-

tonomous control policies for complex, nonlinear systems, and that combining RL with CBF

enables a balance between adaptability, robustness, and guaranteed safety.

5.2 Future Improvement

While the presented framework provides a strong foundation for safe and adaptive au-

tonomous control, several areas offer potential for future improvement and expansion:

1. Sim-to-Real Transfer:

The current work is limited to simulation environments. Future research should focus

on transferring the trained RL-CBF framework to physical robots or vehicles, address-

ing real-world issues such as sensor noise, actuator delay, and modeling mismatch.

2. Multi-Agent and Dynamic Obstacles:

The experiments considered a single robot navigating around a static obstacle. Ex-

tending the approach to multi-agent settings or dynamic obstacles would introduce

challenges in real-time coordination and prediction, further testing the scalability of

the RL–CBF architecture.

3. Adaptive Safety Layers:

While the CBF provides static safety constraints, future studies could develop adap-
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tive or learning-based barrier functions that adjust safety limits based on uncertainty

estimation or changes in the online environment.

4. Hybrid Control and Optimization:

Combining RL with MPC or other optimization-based methods could improve both

performance and interpretability, particularly in scenarios requiring explicit trajectory

planning under constraints.

5. Energy Efficiency and Control Smoothness:

Future work could refine the classification of rewards to include energy or minimization

of control effort, enabling more efficient and smoother control suitable for real-world

applications such as autonomous parking, drone navigation, and mobile robotics.

In summary, this thesis establishes a foundation for integrating data-driven reinforcement

learning with model-based safety assurance methods. The continued development of such hy-

brid systems promises significant advances in the design of safe, intelligent, and autonomous

control architectures capable of operating reliably in uncertain and dynamic environments.



Appendix A

Appendix

A.1 Source Code Repository

All MATLAB and Simulink source codes, trained agents, and simulation environments

used in this thesis are available at the following GitHub repository:

https://github.com/Junquan-Wu/RL_Practice

The repository includes:

• Foundational RL practice code.

• Environment setup files for dynamic and kinematic models.

• Reward function, training and simulation configuration scripts.

• DDPG and CBF integration examples.

• Saved agents and trajectory data for reproducibility.
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