

The City College of New York

Abstract

We present a safety-critical controller for the stabilization problem for force-controlled nonholonomic vehicles.

- The control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems.
- Quadratic programming (QP) is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop.

The control law is *time-invariant* and *continuous* along trajectories.

Motivation & Objective

Ensuring safety is crucial in vehicle control applications. Autonomous systems must satisfy strict safety requirements, including the avoidance of obstacles and inter-vehicle collisions.

- Parking with obstacle avoidance: A vehicle parks in a designated space while actively avoiding obstacles in its path.
- Autonomous Driving: Vehicles navigate and operate in traffic while avoiding accidents with other vehicles.

Constructions of CBFs for Cascaded Systems

• Consider the admission set $\mathcal{C} \subset \mathbb{R}^n$ and the cascaded system

$$\dot{x}_1 = f(x_1) + g(x_1)x_1$$
$$\dot{x}_2 = u$$

• Suppose that we know a CBF B_1 : int $\mathcal{C} \to \mathbb{R}_{>0}$ for the system $\dot{x} = f(x) + g(x)u$ and a <u>"virtual" controller</u> $x_2^* : \mathbb{R}^n \to \mathbb{R}^m$ such that

 $L_{f_{safe}}B_1(x_1) = L_f B_1(x_1) + L_q B_1(x_1) x_2^*(x_1) < \alpha_B(1/B_1(x_1))$ for some $\alpha_B \in \mathcal{K}$ and for all $x_1 \in \operatorname{int} \mathcal{C}$. With $\tilde{x}_2 := x_2 - x_2^*(x_1)$, the cascaded system becomes

$$\dot{x}_1 = f_{\mathsf{safe}}(x_1) + g(x_1)\tilde{x}_2$$
$$\dot{\tilde{x}}_2 = u - \dot{x}_2^* =: \tilde{u}.$$

- Then the function $B : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_{>0}$ defined by $B(\mathbf{x}) := B_1(x_1) + \tilde{x}_2^{\top} H \tilde{x}_2, \quad H = H^{\top} > 0$
- is a CBF for the cascaded system, where $\mathbf{x} := [x_1 \ \tilde{x}_2]^\top$.

Safety-Critical Stabilization of Force-Controlled Nonholonomic Robots

Tianyu Han, Bo Wang* City College of New York

Main Result: Controller Design

Model of Mobile Robots in Polar Coordinates

By defining $\alpha := \theta - \phi$, the model of mobile robots can be expressed in the polar coordinate.

kin

CLF Construction in Polar Coordinates

Following standard backstepping, let $(v, \omega) := (v^*, \omega^*) + (\tilde{v}, \tilde{\omega})$. We design virtual control laws (v^*, ω^*) to stabilize the kinematics, *i.e.*,

$$v^* = -k_\rho \cos(\alpha)\rho$$
$$\omega^* = -k_\alpha \alpha - k_\rho \operatorname{sinc}(2)$$

 $(2\alpha)(\alpha - \lambda\phi)$ then use (u_1, u_2) to stabilize the kinetics in $(z := \tilde{v}/\rho, \tilde{\omega})$ coords., *i.e.*, $-\cos(\alpha)z^2 + k_z z$

$$u_1 = \dot{v}^* - \rho (k_\rho \cos(\alpha)^2 z - u_2) = \dot{\omega}^* - k_\omega \tilde{\omega}$$

The closed-loop system is in a <u>cascaded structure</u>:

$$\begin{vmatrix} \dot{\rho} \\ \dot{\phi} \\ \dot{\alpha} \end{vmatrix} = \underbrace{ \begin{bmatrix} -k_{\rho} \cos(\alpha)^2 \rho \\ -k_{\rho} \sin(2\alpha) \alpha \\ -k_{\alpha} \alpha + \lambda k_{\rho} \sin(2\alpha) \alpha \\ f(\rho, \phi, \alpha) \end{vmatrix} }_{f(\rho, \phi, \alpha)}$$

$$\dot{\tilde{\omega}} = -k_z z$$
$$\dot{\tilde{\omega}} = -k_\omega \tilde{\omega}$$

The strict Lyapunov function is given by

$$\mathcal{V}_r(\rho,\phi,\alpha,z,\tilde{\omega}) := \mu \ln(V(\rho,\phi,\alpha) + 1) + U(z,\tilde{\omega})$$

$$V(\rho, \phi, \alpha) := \frac{\nu(r)}{2} (\rho^2 + \lambda \phi^2 + \alpha^2) + \xi^\top P \xi$$
$$U(z, \tilde{\omega}) := \frac{1}{2} \left(\frac{z^2}{k_z} + \frac{\tilde{\omega}^2}{k_\omega} \right)$$

CBF Construction in Cartesian Coordinates

Assume that the admissible set $\mathcal{C} := \{(x, y) \in \mathbb{R}^2 : h(x, y) \ge 0\}$ is given, where $h : \mathbb{R}^2 \to \mathbb{R}_{>0}$ is continuously differentiable.

For the mobile robot in Cartesian coords., $B(\mathbf{x}) := 1/h(x, y) + \eta^{\top} H \eta$ is a CBF, where $\mathbf{x} := [x \ y \ v \ \omega]^{\top}$, $\eta := [v \ \omega]^{\top}$, and $H = H^{\top} > 0$.

ematics:
$$\begin{cases} \dot{\rho} = v \cos \alpha \\ \dot{\phi} = \frac{v}{\rho} \sin \alpha \\ \dot{\alpha} = \omega - \frac{v}{\rho} \sin \alpha. \end{cases}$$

kinetics:
$$\begin{cases} \dot{v} = u_1 \\ \dot{\omega} = u_2 \end{cases}$$

Safety-Critical Control Design

 $\min \frac{1}{2}(\bar{u}^{\top}\bar{u} + m\delta^{\top}\delta)$

Simulation Results

Figure 2. Comparison of the robot paths and convergence of variables in Example 1.

The simulation results are shown in Figs. 2 and 3, which demonstrate that the proposed CLF-CBF γm -QP controller effectively achieves parking with obstacle avoidance.

[1] arXiv:2408.10941, August 2024.

For any r > 0, the γm -QP problem is defined as

- s.t. $F_1 := \gamma_f (L_{f_1} \mathcal{V}_r + \alpha(|\chi|)) + L_{g_1} \mathcal{V}_r \bar{u} + L_{g_1} \mathcal{V}_r \delta \leq 0$ $F_2 := L_{f_2}B(\mathbf{x}) - \alpha_B \left(1/B(\mathbf{x})\right) + L_{q_2}B(\mathbf{x})\bar{u} \le 0$
- where $\chi := [\rho \phi \alpha z \tilde{\omega}]^{\top}$, $\alpha_B \in \mathcal{K}$, $\alpha := \frac{\epsilon L_f V}{V+1} \frac{1}{2} |\zeta|^2$, and $\epsilon > 0$ is chosen to be sufficiently small. The closed-form solution of the γm -QP problem can be obtained by invoking the KKT conditions.

We present two simulation examples to illustrate the performance of the proposed controller. In each example, the proposed CLF-CBF γm -QP controller is compared with the nominal controller and the CLF-based pointwise minimum norm (PMN) controller.

Figure 3. Comparison of the robot paths and convergence of variables in Example 2.

References

F. Han, B. Wang, "Safety-Critical Stabilization of Force-Controlled Nonholonomic Robots," *arXiv preprint*,