

The City College
of New York

Safety-Critical Stabilization of Force-Controlled Nonholonomic Robots

Tianyu Han, Bo Wang^{*} City College of New York

Abstract

We present a *safety-critical controller* for the *stabilization* problem for force-controlled nonholonomic vehicles.

- The control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems.
- Quadratic programming (QP) is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop.

The control law is *time-invariant* and *continuous* along trajectories.

Motivation & Objective

Ensuring *safety* is crucial in vehicle control applications. Autonomous systems must satisfy *strict safety requirements*, including the avoidance of obstacles and inter-vehicle collisions.

 $\chi_2^*:\mathbb{R}^n\to\mathbb{R}^m$ such that $L_{f_{\text{safe}}}B_1(x_1) = L_fB_1(x_1) + L_gB_1(x_1)x_2^*$ $\alpha_B^*(x_1) < \alpha_B(1/B_1(x_1))$ for some $\alpha_B \in \mathcal{K}$ and for all $x_1 \in \text{int } \mathcal{C}$. With $\tilde{x}_2 := x_2 - x_2^*$ $_{2}^{\ast}(x_{1}),$ the cascaded system becomes

- **Parking with obstacle avoidance:** A vehicle parks in a designated space while actively avoiding obstacles in its path.
- **Autonomous Driving:** Vehicles navigate and operate in traffic while avoiding accidents with other vehicles.

By defining $\alpha := \theta - \phi$, the model of mobile robots can be expressed in the polar coordinate.

kin

Constructions of CBFs for Cascaded Systems

Consider the admission set $\mathcal{C} \subset \mathbb{R}^n$ and the cascaded system

$$
\dot{x}_1 = f(x_1) + g(x_1)x_2 \n\dot{x}_2 = u
$$

Suppose that we know a CBF B_1 : $\text{int } C \to \mathbb{R}_{>0}$ for the system $\dot{x} = f(x) + g(x)u$ and a "virtual" controller x_2^*

$$
\dot{x}_1 = f_{\text{safe}}(x_1) + g(x_1)\tilde{x}_2
$$

$$
\dot{\tilde{x}}_2 = u - \dot{x}_2^* =: \tilde{u}.
$$

- Then the function $B:\mathbb{R}^n\times\mathbb{R}^m\rightarrow\mathbb{R}_{>0}$ defined by $B(\mathbf{x}) := B_1(x_1) + \tilde{x}_2^{\top} H \tilde{x}_2, \quad H = H^{\top} > 0$
- is a CBF for the cascaded system, where $\mathbf{x} := [x_1 \ \tilde{x}_2]^\top$.

Main Result: Controller Design

Model of Mobile Robots in Polar Coordinates

- $\bar{u} + m\delta^{\top}\delta$
- $\mathcal{L}_{f_1} \mathcal{V}_r + \alpha(|\chi|)) + L_{g_1} \mathcal{V}_r \bar{u} + L_{g_1} \mathcal{V}_r \delta \leq 0$ $B(\mathbf{x}) - \alpha_B (1/B(\mathbf{x})) + L_{q_2} B(\mathbf{x}) \bar{u} \leq 0$
- $\epsilon L_f V$ $\frac{\epsilon L_f V}{V+1} - \frac{1}{2}$ 2 $|\zeta|^2$, and $\epsilon > 0$ is chosen to be sufficiently small. The closed-form solution of the *γm*-QP problem can be obtained by invoking the KKT conditions.

ematics:

\n
$$
\begin{cases}\n\dot{\rho} = v \cos \alpha \\
\dot{\phi} = \frac{v}{\rho} \sin \alpha \\
\dot{\alpha} = \omega - \frac{v}{\rho} \sin \alpha.\n\end{cases}
$$

We present two simulation examples to illustrate the performance of the proposed controller. In each example, the proposed CLF-CBF *γm*-QP controller is compared with the nominal controller and the CLF-based pointwise minimum norm (PMN) controller.

kinetics:
$$
\begin{cases} \dot{v} = u_1 \\ \dot{\omega} = u_2 \end{cases}
$$

CLF Construction in Polar Coordinates

Following standard backstepping, let $(v, \omega) := (v^*, \omega^*) + (\tilde{v}, \tilde{\omega})$. We design virtual control laws (v^*, ω^*) to stabilize the kinematics, *i.e.*,

$$
v^* = -k_\rho \cos(\alpha)\rho
$$

\n
$$
\omega^* = -k_\alpha \alpha - k_\rho \sin(2\alpha)(\alpha - \lambda \phi)
$$

\nso stabilize the kinetics in $(z := \tilde{v}/\rho, \tilde{\omega})$ coords., i.e.,
\n
$$
= \dot{v}^* - \rho (k_\rho \cos(\alpha))^2 z - \cos(\alpha) z^2 + k_z z)
$$

then use (u_1, u)

$$
\omega^* = -k_{\alpha}\alpha - k_{\rho}\operatorname{sinc}(2\alpha)(\alpha - \lambda\phi)
$$

\n
$$
\iota_2) \text{ to stabilize the kinetics in } (z := \tilde{v}/\rho, \tilde{\omega}) \text{ coords., i.e.,}
$$

\n
$$
u_1 = \dot{v}^* - \rho(k_{\rho}\cos(\alpha)^2 z - \cos(\alpha)z^2 + k_z z)
$$

\n
$$
u_2 = \dot{\omega}^* - k_{\omega}\tilde{\omega}
$$

The closed-loop system is in a cascaded structure:

$$
\begin{bmatrix}\n\dot{\rho} \\
\dot{\phi} \\
\dot{\alpha}\n\end{bmatrix} = \underbrace{\begin{bmatrix}\n-k_{\rho}\cos(\alpha)^{2}\rho \\
-k_{\rho}\sinc(2\alpha)\alpha \\
-k_{\alpha}\alpha + \lambda k_{\rho}\sinc(2\alpha)\phi\n\end{bmatrix}}_{f(\rho,\phi,\alpha)}
$$

$$
\begin{aligned}\n\dot{z} &= -k_z z \\
\dot{\tilde{\omega}} &= -k_{\omega} \tilde{\omega}.\n\end{aligned}
$$

The strict Lyapunov function is given by

$$
\mathcal{V}_r(\rho,\phi,\alpha,z,\tilde{\omega}) := \mu \ln(V(\rho,\phi,\alpha) + 1) + U(z,\tilde{\omega})
$$

where

$$
V(\rho, \phi, \alpha) := \frac{\nu(r)}{2} (\rho^2 + \lambda \phi^2 + \alpha^2) + \xi^{\top} P \xi
$$

$$
U(z, \tilde{\omega}) := \frac{1}{2} \left(\frac{z^2}{k_z} + \frac{\tilde{\omega}^2}{k_\omega} \right)
$$

CBF Construction in Cartesian Coordinates

Assume that the admissible set $C := \{(x, y) \in \mathbb{R}^2 : h(x, y) \ge 0\}$ is given, where $h:\mathbb{R}^2\to\mathbb{R}_{>0}$ is continuously differentiable.

For the mobile robot in Cartesian coords., $B(\mathbf{x}) := 1/h(x, y) + \eta^\top H \eta$ \mathbf{a} CBF, where $\mathbf{x} := [x \ y \ v \ \omega]^\top, \, \eta := [v \ \omega]^\top, \, \mathbf{a}$ nd $H = H^\top > 0.$

Safety-Critical Control Design

For any
$$
r > 0
$$
, the γm ⁻¹
\n
$$
\min \frac{1}{2} (\bar{u}^\top \bar{u})
$$
\ns.t. $F_1 := \gamma_f(L_j)$
\n
$$
F_2 := L_{f_2} B
$$

 $\mathsf{where} \ \chi := [\rho \ \phi \ \alpha \ z \ \tilde{\omega}]^\top, \ \alpha_B \in \mathcal{K}, \ \alpha :=$

Simulation Results

Figure 2. Comparison of the robot paths and convergence of variables in Example 1.

Figure 3. Comparison of the robot paths and convergence of variables in Example 2.

The simulation results are shown in Figs. [2](#page-0-0) and [3,](#page-0-1) which demonstrate that the proposed CLF-CBF *γm*-QP controller effectively achieves *parking with obstacle avoidance*.

References

[1] T. Han, B. Wang, "Safety-Critical Stabilization of Force-Controlled Nonholonomic Robots," *arXiv preprint*,

arXiv:2408.10941, August 2024.

-QP problem is defined as