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Abstract

We present a safety-critical controller for the stabilization problem

for force-controlled nonholonomic vehicles.

The control law is based on the constructions of control

Lyapunov functions (CLFs) and control barrier functions (CBFs)

for cascaded systems.

Quadratic programming (QP) is employed to combine CLFs and

CBFs to integrate both stability and safety in the closed loop.

The control law is time-invariant and continuous along trajectories.

Motivation & Objective

Ensuring safety is crucial in vehicle control applications. Au-

tonomous systems must satisfy strict safety requirements, includ-

ing the avoidance of obstacles and inter-vehicle collisions.

Parking with obstacle avoidance: A vehicle parks in a

designated space while actively avoiding obstacles in its path.

Autonomous Driving: Vehicles navigate and operate in traffic

while avoiding accidents with other vehicles.

Constructions of CBFs for Cascaded Systems

Consider the admission set C ⊂ Rn and the cascaded system

ẋ1 = f (x1) + g(x1)x2
ẋ2 = u

Suppose that we know a CBF B1 : int C → R>0 for the system

ẋ = f (x) + g(x)u and a “virtual” controller x∗
2 : Rn → Rm such that

LfsafeB1(x1) = LfB1(x1) + LgB1(x1)x∗
2(x1) < αB(1/B1(x1))

for some αB ∈ K and for all x1 ∈ int C. With x̃2 := x2 − x∗
2(x1), the

cascaded system becomes

ẋ1 = fsafe(x1) + g(x1)x̃2
˙̃x2 = u − ẋ∗

2 =: ũ.

Then the function B : Rn × Rm → R>0 defined by

B(x) := B1(x1) + x̃>
2 Hx̃2, H = H> > 0

is a CBF for the cascaded system, where x := [x1 x̃2]>.

Main Result: Controller Design

Model of Mobile Robots in Polar Coordinates

By defining α := θ−φ, the model of mobile robots can be expressed
in the polar coordinate.

kinematics:


ρ̇ = v cos α

φ̇ = v

ρ
sin α

α̇ = ω − v

ρ
sin α.

kinetics:

{
v̇ = u1
ω̇ = u2

CLF Construction in Polar Coordinates

Following standard backstepping, let (v, ω) := (v∗, ω∗) + (ṽ, ω̃). We
design virtual control laws (v∗, ω∗) to stabilize the kinematics, i.e.,

v∗ = −kρ cos(α)ρ
ω∗ = −kαα − kρ sinc(2α)(α − λφ)

then use (u1, u2) to stabilize the kinetics in (z := ṽ/ρ, ω̃) coords., i.e.,
u1 = v̇∗ − ρ(kρ cos(α)2z − cos(α)z2 + kzz)
u2 = ω̇∗ − kωω̃

The closed-loop system is in a cascaded structure:ρ̇

φ̇
α̇

 =

 −kρ cos(α)2ρ
−kρ sinc(2α)α

−kαα + λkρ sinc(2α)φ


︸ ︷︷ ︸

f (ρ,φ,α)

+

ρ cos α 0
sin α 0

− sin α 1


︸ ︷︷ ︸

g(ρ,α)

[
z
ω̃

]

ż = −kzz
˙̃ω = −kωω̃.

The strict Lyapunov function is given by

Vr(ρ, φ, α, z, ω̃) := µ ln(V (ρ, φ, α) + 1) + U(z, ω̃)
where

V (ρ, φ, α) := ν(r)
2

(ρ2 + λφ2 + α2) + ξ>Pξ

U(z, ω̃) := 1
2

(
z2

kz
+ ω̃2

kω

)
CBF Construction in Cartesian Coordinates

Assume that the admissible set C := {(x, y) ∈ R2 : h(x, y) ≥ 0} is
given, where h : R2 → R>0 is continuously differentiable.

For the mobile robot in Cartesian coords., B(x) := 1/h(x, y) + η>Hη
is a CBF, where x := [x y v ω]>, η := [v ω]>, and H = H> > 0.

Safety-Critical Control Design

For any r > 0, the γm-QP problem is defined as

min 1
2
(ū>ū + mδ>δ)

s.t. F1 := γf(Lf1Vr + α(|χ|)) + Lg1Vrū + Lg1Vrδ ≤ 0
F2 := Lf2B(x) − αB (1/B(x)) + Lg2B(x)ū ≤ 0

where χ := [ρ φ α z ω̃]>, αB ∈ K, α := εLfV
V +1 − 1

2|ζ|2, and ε > 0 is
chosen to be sufficiently small. The closed-form solution of the

γm-QP problem can be obtained by invoking the KKT conditions.

Simulation Results

We present two simulation examples to illustrate the performance

of the proposed controller. In each example, the proposed CLF-CBF

γm-QP controller is compared with the nominal controller and the
CLF-based pointwise minimum norm (PMN) controller.
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Figure 2. Comparison of the robot paths and convergence of variables in Example 1.
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Figure 3. Comparison of the robot paths and convergence of variables in Example 2.

The simulation results are shown in Figs. 2 and 3, which demon-

strate that the proposed CLF-CBF γm-QP controller effectively
achieves parking with obstacle avoidance.
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