The City College
of New York

Abstract

We present a safety-critical controller for the stabilization problem
for force-controlled nonholonomic vehicles.

» The control law is based on the constructions of control
Lyapunov functions (CLFs) and control barrier functions (CBFs)
for cascaded systemes.

= Quadratic programming (QP) is employed to combine CLFs and
CBFs to integrate both stability and safety in the closed loop.

The control law is time-invariant and continuous along trajectories.

Motivation & Objective

Ensuring safety is crucial in vehicle control applications. Au-
tonomous systems must satisfy strict safety requirements, includ-
ing the avoidance of obstacles and inter-vehicle collisions.

= Parking with obstacle avoidance: A vehicle parks in a
designated space while actively avoiding obstacles in its path.

- Autonomous Driving: Vehicles navigate and operate in traffic
while avoiding accidents with other vehicles.
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Main Result: Controller Design

= Consider the admission set C C R" and the cascaded system
1 = f(x1) + g(x1)x2
ii?g — U
= Suppose that we know a CBF B; : intC — R- for the system
T = f(x)+ g(x)u and a “virtual” controller x4 : R" — R™ such that

Ly Bi(r1) = LyBi(x1) + LyBi(z1)x5(21) < ap(l/Bi(z1))

for some ap € K and for all z; € int C. With 25 .= x5 — z3(x1), the
cascaded system becomes

L1 = Jeate(@1) + g(21) T2
To = U — Ty =: U.
= Then the function B : R" x R"™ — R., defined by
B(x):= Bi(z)) + &y Hiy, H=H'">0
is a CBF for the cascaded system, where x := [z 7] '.
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Model of Mobile Robots in Polar Coordinates

By defining o := 0 — ¢, the model of mobile robots can be expressed
in the polar coordinate.

P = VU COS
b =—si
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CLF Construction in Polar Coordinates

Following standard backstepping, let (v, w) = (v*,w*) + (v,@). We
design virtual control laws (v*, w*) to stabilize the kinematics, i.e.,

v* = —k,cos(a)p

w* = —koa — k,ysinc(2a)(a — A\@)
then use (uy, us) to stabilize the kinetics in (z := v/p, @) coords., i.e.,
uy = v* — p(k,cos(a)’z — cos(a)z” + k.z)
U = w" — k0

The closed-loop system is in a cascaded structure:

P | —k,cos(a)’p | [pcosa O -
o = —k,sinc(2a)a + | sina0 -
Q —kqa + Ak, sinc(2a) ¢ —gina 1| Y-
_ e ——— N\ S—
f<p7¢7&) g(p,oz)
z=—k.z
W= —k,w.

The strict Lyapunov function is given by
Vilp, ¢, a,z,0) = puln(V(p, ¢, )+ 1)+ U(z,0)
where
Vip.6va) = (52 1+ A6+ 0?) + TP
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CBF Construction in Cartesian Coordinates

Assume that the admissible set C := {(z,y) € R* : h(z,y) > 0} is
given, where h : R> — R-, is continuously differentiable.

For the mobile robot in Cartesian coords., B(x) := 1/h(z,y)+n' Hn
isa CBF, wherex =[zyvw|',n:=ww|',and H=H" > 0.
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Safety-Critical Control Design

For any r > 0, the ym-QP problem is defined as
1

min §(ﬂTﬂ +md ' o)
S.t. F1 = fyf(LflvT T CV(|XD) T L91V7“ﬂ T L91V?“5 é 0
F, = Ly,B(x) — ap(1/B(x)) + L,B(x)u < 0

where y == [po a2z, ag € K, a := EVL_{Y 2|¢]%, and e > (s

chosen to be sufficiently small. The closed-form solution of the
~vm-QP problem can be obtained by invoking the KKT conditions.

Simulation Results

We present two simulation examples to illustrate the performance
of the proposed controller. In each example, the proposed CLF-CBF
~vm-QP controller is compared with the nominal controller and the
CLF-based pointwise minimum norm (PMN) controller.
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Figure 2. Comparison of the robot paths and convergence of variables in Example 1.
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Figure 3. Comparison of the robot paths and convergence of variables in Example 2.

The simulation results are shown in Figs. 2 and 3, which demon-
strate that the proposed CLF-CBF ym-QP controller effectively
achieves parking with obstacle avoidance.
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